

32ND ANNUAL CING ONGEVITY. MEDICINE

Mastering Oxidative Stress: Blueprint to Longevity

Dr. Kim Bruno, DC, CCN

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Introduction & Disclosure

- 17 yrs of clinical practice in functional medicine
- Doctor of Chiropractic
- Certified Clinical Nutritionist
- Colorado native and enjoys spending time outdoors with husband and 2 daughters

Disclosure:

• Clinical Education Consultant – Vibrant Wellness

Learning Objectives

- 1. Review concept of oxidative stress in context of clinical utility and associations of root cause mechanisms to disease
- 2. Evaluate the production of reactive oxygen species and the protective antioxidant defense system.
- 3. Review cutting edge lab evaluation combining genetic predispositions with markers of current oxidative damage as a unique, comprehensive insight into individual health, paving the way for personalized wellness strategies.
- 4. Explore the science supporting antioxidant interventions, focusing on dietary, lifestyle, and supplementation strategies that mitigate oxidative damage.

Oxidative Stress

Clinical Associations

Copyright @ 2024 Dr Kim Bruno. All rights reserved.

Oxidative Stress As Root Cause To Many Chronic Conditions

- Oxidative Stress increases with age, directly affects tissue function through cellular damage
- Many conditions associated with aging have direct relationship with oxidative stress
 Alzheimer's, cancer, cardiovascular disease, diabetes
- Imbalance in oxidants causes cellular damage
 - Specifically thought that the failure of the innate cellular antioxidant defense mechanism is to blame
- Most of the antioxidant defense within cells is provided by antioxidant enzymes using their specific substrates to reduce oxidants

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Health Conditions With Strong Evidence of Oxidative Stress

- Aging (sarcopenia, frailty)
- Autoimmune conditions
- Cancer
- Cardiovascular diseases
- Lung disease (chronic pulmonary obstruction, lung cancer)
- Macular degeneration
- Metabolic diseases—diabetes, NAFLD, diabetic retinopathy
- Neurodegenerative disorders (Alzheimer's and Parkinson's diseases)
- Psychiatric diseases (depression, schizophrenia, bipolar disorder)
- Renal disease

Clinical Utility

Mechanisms Of Oxidative Stress In Autoimmune Conditions

- Oxidative posttranslational modifications of proteins, know as protein oxidation
- Protein modifications may give rise to neoepitopes that are recognized as non-self and result in the formation of autoantibodies

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Image: https://www.sciencedirect.com/science/article/abs/pii/S0891584918309377.

Clinical Utility

Mechanisms Of Oxidative Stress In Cardiovascular Disease

- Oxidative stress triggers endothelial cells proliferation, vascular smooth muscle cells proliferation, and vasoconstriction
- Eventually leading to endothelial dysfunction
- Initiation and progression of atherosclerosis

Clinical Utility

Mechanisms Of Oxidative Stress In Diabetic Retinopathy

- Hyperglycemia and epigenetic modifications induce mitochondrial dysfunction and metabolic pathways, such as polyol, hexosamine, PKC pathways and AGEs (Advanced Glycation End Products) leading elevated levels of ROS.
- Elevated levels of ROS cause **lipid peroxidation** and neovascularization through elevated VEGF and cytokine levels, finally terminating in diabetic retinopathy.

Copyright © 2024 Dr Kim Bruno. All rights reserved. Image: https://www.sciencedirect.com/science/article/pii/S2213231723003683.

Oxidative Stress & Inflammation

- Consider oxidative stress may be just as important as inflammation
- Inflammatory markers have been more widely available (until now!)
- Clinically, we see many patients with well-established inflammatory disorder presentations whose inflammatory markers are WNL
- Some patients don't respond well (or as expected) to inflammatory targeted treatments
- Chicken or the Egg situation Treating the root cause of a known inflammatory condition involves treating the cause of sources of ROS, which includes inflammation itself. inflammation which may be driven by oxidative stress, so this involves targeting endogenous and exogenous

Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023 Oct;97(10):2499-2574. doi: 10.1007/s00204-023-03562-9.

Oxidative Stress

Concept Overview

Basic Mechanism of Oxidative Stress

Cellular Damage ----->

- Tissue Damage --->
- Organ Damage --->
- Altered Function and Organ Death

*such as reactive oxygen species (ROS)

1.Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J, Janda K. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski. 2020 Apr 22;48(284):124-127. PMID: 32352946. 2.Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int J Mol Med. 2016;38(6):1623-1641. doi: 10.3892/ijmm.2016.2777.

How Are ROS and RNS Formed?

1. Normal Cellular Processes

• Aerobic respiration

2. Inflammatory Processes

Macrophages make ROS to kill pathogens

3. Oxidant Exposure

• Diet and lifestyle – including exposure to heavy metals, environmental toxins, mycotoxins

1. Muri J, Kopf M. The thioredoxin system: Balancing redox responses in immune cells and tumors. Eur J Immunol. 2023;53(1):e2249948. doi: 10.1002/eji.202249948.

2. Aleksandrova K, Koelman L, Rodrígues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol. 2021;42:101869. doi: 10.1016/j.redox.2021.101869.

3.Shekhova E. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog. 2020;16(5):e1008470. doi: 10.1371/journal.ppat.1008470.

1. Normal Cellular Processes Create ROS

- Superoxide (O₂⁻) is primarily generated by electrons escaping from ETC
- 0.4-4.0% of oxygen (O₂) consumed is converted into superoxide (O₂⁻)
- Producing ~1 kg/year ROS

The consequence is about **100,000 oxidative attacks on mitochondrial DNA per cell per day**

1.Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007 Aug;83(1):84-92. Review.

National Institutes of Health. Stat Pearls. Electron Transport Chain graphic. Accessed 03.05.2024. https://www.ncbi.nlm.nih.gov/books/NBK526105/figure/article-20982.image.f1/
 Evans JL, Goldfine ID. Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol Ther. 2000;2(3):401-413. doi:10.1089/15209150050194279.

4. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994;91(23):10771-10778. doi:10.1073/pnas.91.23.10771

Free Radicals in Aging

2. Inflammatory Processes Create ROS

Innate immune cells produce ROS to kill invading pathogens

1.Shekhova E. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog. 2020;16(5):e1008470. doi: 10.1371/journal.ppat.1008470 2.Van der Lugt T, Weseler AR, Gebbink WA, et al. Dietary advanced glycation endproducts induce an inflammatory response in human macrophages in vitro. Nutrients. 2018;10(12):1868.

Are Free Radicals Always Harmful?

- No. ROS are essential signaling molecules, required to promote health and longevity
- Turning off mitochondrial ROS signal impairs the lifespan-extending & health-promoting capabilities of reduced calorie uptake, glucose restriction & physical exercise

Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol. 2010;45(6):410 8. doi: 10.1016/j.exger.2010.03.014. Review.

Differential Response to Rising Oxidative Stress

Copyright © 2024 Dr Kim Bruno. All rights reserved.

3. Dietary & Environmental Oxidants Create ROS

- Too Many Calories
- Hyperglycemia
- Cigarette Smoke
- Alcohol
- UV Radiation
- Ionizing Radiation
- Environmental Toxins
- Heavy Metals
- Mycotoxins

Balance and Protection with Antioxidants

- Dietary vitamins & micronutrients
- Plant phytonutrients
- Endogenous antioxidants!

What Are Endogenous Antioxidants?

Enzymatic

- Catalase (CAT)
- Glutathione Peroxidase (GPx)
- Glutathione S-transferase (GST)
- Super Oxide Dismutase (SOD)
- Thioredoxin (TXN)

Non-Enzymatic

- Albumin
- Alpha-lipoic acid (ALA)
- Bilirubin

Coenzyme Q10

- Glutathione
- Melatonin
- Uric acid

https://www.scienceopen.com/document_file/0440cca8-e66d-4d53-9605-4db471c9e647/ScienceOpenPreprint/Manuscript%20%28Full%20draft%29%20-%20OS%20Mechanisms,%20Quantification%20and%20its%20role%20in%20human%20aging.pdf

Copyright © 2024 Dr Kim Bruno. All rights reserved.

https://www.scienceopen.com/document_file/0440cca8-e66d-4d53-9605-4db471c9e647/ScienceOpenPreprint/Manuscript%20%28Full%20draft%29%20-%20OS%20Mechanisms,%20Quantification%20and%20its%20role%20in%20human%20aging.pdf

Copyright © 2024 Dr Kim Bruno. All rights reserved.

https://www.scienceopen.com/document_file/0440cca8-e66d-4d53-9605-4db471c9e647/ScienceOpenPreprint/Manuscript%20%28Full%20draft%29%20-%20OS%20Mechanisms,%20Quantification%20and%20its%20role%20in%20human%20aging.pdf

Copyright © 2024 Dr Kim Bruno. All rights reserved.

https://www.scienceopen.com/document_file/0440cca8-e66d-4d53-9605-4db471c9e647/ScienceOpenPreprint/Manuscript%20%28Full%20draft%29%20-%200S%20Mechanisms,%20Quantification%20and%20its%20role%20in%20human%20aging.pdf

Copyright © 2024 Dr Kim Bruno. All rights reserved.

https://www.scienceopen.com/document_file/0440cca8-e66d-4d53-9605-4db471c9e647/ScienceOpenPreprint/Manuscript%20%28Full%20draft%29%20-%20OS%20Mechanisms,%20Quantification%20and%20its%20role%20in%20human%20aging.pdf

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Impact of Genetics, Diet, & Lifestyle

"Bad" Genetics Poorly functioning antioxidant enzymes

ROS & RNS

Healthy Lifestyle e.g., non-smoker, non-drinker regular exercise, ample sleep, stress management

Robust Antioxidant Status e.g., nutrient diet with adequate protein, fiber, vitamins, minerals, PROTECTED phytonutrients, etc.

Antioxidants

Protection of: DNA/RNA, lipids, proteins

BYD&L

Unhealthy Lifestyle e.g., smoking, alcohol, lack of exercise, excessive exercise

Poor Antioxidant Status

e.g., Western diet, high in fried food, high glycemic, excessive calories, etc.

Environment e.g., exposure to phthalates, pesticides, heavy metals, drugs, OXIDATIVE STRESS infections

ROS & RNS

"Good" Genetics Optimally functioning antioxidant enzymes

Antioxidants

Damage to: DNA/RNA, lipids, proteins

Oxidative Stress Evaluation

- Oxidative Stress Damage Markers
- Genetics of Antioxidant Defense
 System

What Is the Best Way To Evaluate Oxidative Stress?

Genetic Predispositions

(Are your antioxidants working?)

Oxidative Damage Markers

(Do you have oxidized lipids, proteins, DNA?)

Genetics in the Antioxidant Defense System

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Antioxidant Genetics: 32 SNPs

AMP-Activated Protein Kinase (AMPK)

- PRKAA2: rs2796498
- PRKAA2: rs10789038

Catalase

- CAT: rs1001179
- CAT: rs7943316
- CAT: rs4756146

Cyclooxygenase-2

• COX-2: -765G

Cytochrome B5 Reductase

• CYB5R3: rs916321

Cytochrome P450

• CYP1A1: rs1048943

Glutamate Ammonia Ligase

• GLUL: rs10911021

Glutathione Peroxidase

- GPX1: rs1050450
- GPX2: rs4902346
- GPX2: rs2071566
- GPX4: rs713041
- GPx1: rs1987628

Glutathione S-transferase

- GSTM1: rs366631
- GSTM5: rs3754446
- GSTP1: rs1695

Glutathione Synthetase

• GSS: rs121909307

Glutathione-Disulfide Reductase

• GSR: rs8190955

Heme Oxygenase

• HMOX1: rs2071746

NADPH Oxidase

- CYBA: C242T
- CYBA: A-930G

Selenoprotein

• SELENOP: rs3877899

Super Oxide Dismutase

- SOD1: rs2234694
- SOD2: rs4880
- SOD3: rs1799895
- SOD3: rs8192287

Thioredoxin System

- TXNRD1: rs7310505
- TXNRD2: rs1548357

Thioredoxin Reductase

• TrxR2: rs4485648

Xanthine Dehydrogenase

- XDH: -337GA
- XDH: 565+64C

SNP Classification: Wild Type vs Mutant

Wild Type

- The most common (a.k.a. **reference** or **ancestral**) allele
- Typically considered "normal"
- Often (but not always) results in least risk
- Represented by a (-) sign

Mutant

- The less common (a.k.a. variant) allele
- Typically occur less frequently
- Often (but not always) results in elevated risk
- Represented by a (+) sign

SNP Terminology: Genetic Combinations

*Friendly reminder - our patients may not like to be referred to as mutants 😳

Highway Analogy: Risk

SNP Information: Genetic Bypass

- Is there an alternate highway?
 - Are there affected enzymes/SNP in the alternate pathway
- Evaluate how much traffic is on the highway
 - Especially toxic burden
- What are the enzyme cofactor levels?
 - Consider **Micronutrients**, evaluating intracellular levels of above nutrients

Sample Report: Antioxidant Genetics

Antioxidant	Genetics	🕀 🗣 Hom	ozygous Mutant 🛛 🕀 🗲	Heterozygous	erozygous 🛛 🗢 🖨 Homozygous Wild		
Test Name	Gene Name	Risk Association	Your Mutation	Your Risk	Reference		
rs2234694	SOD1	Increased superoxide levels	$\Theta \Theta A/A$	Normal	A/A		
rs4880	SOD2	Impaired anti-oxidant activity	⊕⊝C/T	Partially elevated	¢ c/c		
rs1799895	SOD3	Elevated ROS production	⊖⊖C/C	Normal	C/C		
rs8192287	SOD3	Disrupted EC-SOD activity	⊕⊕T/T	Elevated	G/G		
rs1001179	CAT	Mitochondrial dysfunction	⊖⊖C/C	Normal	C/C		
rs4756146	CAT	Mitochondrial dysfunction	⊕⊕T/T	Elevated	C/C		
rs7943316	CAT	Mitochondrial dysfunction	⊕⊕T/T	Elevated	A/T, A/A		

Oxidative Stress *Quantifiable Damage Markers*

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Information Classification: General

Oxidative Damage: 16 Markers

Lipid Peroxidation

- Malondialdehyde (MDA)
- Glutathione 4-hydroxynonenal (4-HNE)
- 8-iso-prostaglandin F2α (8-iso-PGF2α)
- 11- β -Prostaglandin F2 α
- 15(R)-Prostaglandin F2α

DNA/RNA Damage

- 8-Hydroxy-2-deoxyguanosine (8-OHdG)
- 8-Hydroxyguanine
- 8-Hydroxyguanosine

Protein Oxidation

- Dityrosine
- Bromotyrosine
- Chlorotyrosine

Nitrative Stress Biomarkers

- 8-Nitroguanosine
- 8-Nitroguanine
- Nitrotyrosine

Advanced Glycation Products

- Nε-(carboxymethyl)lysine (CML)
- Nε -carboxyethyllysine (CEL)

Markers of DNA/RNA Damage

- 8-Hydroxy-2-deoxyguanosine (8-OHdG)
- 8-Hydroxyguanine
- 8-Hydroxyguanosine

Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339(1-2):1-9. doi: 10.1016/j.cccn.2003.09.010.

8-OHdG: Biomarker of Early Disease Detection

EA

Review

Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics

Clinica Chimica Acta 339 (2004) 1-9

Lily L. Wu^{a,b,c}, Chiuan-Chian Chiou^d, Pi-Yueh Chang^e, James T. Wu^{a,c,*}

^aDepartment of Pathology: University of Unda Health Science Center, Sult Lake City, UT, USA Department of Internal Medicine, University of Unda Health Science, Sult Lake Cit, UT, USA ^eAssociated Regional University Pathologist Laboratory (ARUP), University of Unda Health Science Center, Sult Lake City, UT, USA ^eSchool of Medical Technology: Chang Gang University, Tanyuan 333, Taiwan ^eDepartment of Pathology, Chang Gang Gang University and Markan Science Center, Sult Lake City, UT, USA ^eDepartment of Pathology, Chang Gang Menari Medical Hospital, Taiwan ^eDepartment of Pathology, Chang Gang Menari Menari Hospital, Taiwan

Received 10 June 2003; received in revised form 10 September 2003; accepted 10 September 2003

Abstract

Reactive oxygen species (ROS) produced either endogenously or exogenously can attack lipid, protein and nucleic acid simultaneously in the living cells. In nuclear and mitochondrial DNA, 8-bydroxydcoxyguanosine (8-OHdG), an oxidized nucleoside of DNA, is the most frequently detected and studied DNA lesion. Upon DNA repair, 8-OHdG is exerted in the urine. Numerous evidences have indicated that urinary 8-OHdG not only is a biomarker of generalized, cellular oxidative stress but night also be a risk. factor for cancer, atheroselerosis and diabetes. For example, clevated level of urinary 8-OHdG is has been detected in patients with various cancers. In human atheroselerosic plaques, there were increased amounts of oxidatively modified DNA and 8-OHdG. Elevated urinary 8-OHdG in diabetes correlated with the severity of diabetic nephropathy and retinopathy. We have discussed various methods for determining 8-OHdG in the tissue and urine, including HPLC with and without extraction, and ELISA, Using the ELISA we developed, we found that the normal range of urinary 8-OHdG for females was $3.9 \pm 4.2.1$ ng/mg creatinine and $2.9.6 \pm 24.5$ ng/mg creatinine for males, respectively. We found that the normal value between females and males is significantly different ($\rho < 0.001$). Discusses urinary (8-OHdG) as a biomarker for **oxidative DNA damage** and its association with increased risk for diseases such as **cancer, atherosclerosis**, and **diabetes**.

The study focuses on the mechanisms by which 8-OHdG serves as a signal of oxidative stress and how its elevated levels can reflect the severity of these conditions, thus providing a potential tool for early detection and monitoring of disease progression.

DNA Damage

nucleoside of DNA, is the most frequently detected and studied DNA lesion. Upon DNA repair, 8-OHdG is excreted in the urine. Numerous evidences have indicated that urinary 8-OHdG not only is a biomarker of generalized, cellular oxidative stress but might also be a risk factor for cancer, atherosclerosis and diabetes. For example, elevated level of urinary 8-OHdG has been detected in patients with various cancers. In human atherosclerotic plaques, there were increased amounts of oxidatively

Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-0HdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339(1-2):1-9. doi: 10.1016/j.cccn.2003.09.010.

Markers of Lipid Peroxidation

- Malondialdehyde (MDA)
- Glutathione 4-hydroxynonenal (4-HNE)
- 8-iso-prostaglandin F2α (8-iso-PGF2α)
- 11- β -Prostaglandin F2 α
- 15(R)-Prostaglandin F2α

F₂-Isoprostanes: Lipid Peroxidation Markers

National Institutes of Health. National Library of Medicine. National Center for Blotechnology Information. Arachidonic Acid. Accessed 02.20.2024. https://pubchem.ncbi.nlm.nih.gov/compound/Arachidonic-Acid

F₂-Isoprostane: A Risk Factor for CHD

1. Davies SS, Hoberts LJ 2nd. F2+soprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med. 2011;b(b):59+66. doi: 10.1016/j.treeradbiomed.2011.10.1023. 2.Lara-Guzmán OJ, Gil+Zquierdo Å, Medina S, et al. Oxidized LD triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol. 2018;15:1-11.0023.

Advanced Glycation Products

- Nε-(carboxymethyl)lysine (CML)
- Nε -carboxyethyllysine (CEL)

1.0imomi M, Hatanaka H, Ishikawa K, Kubota S, Yoshimura Y, Baba S. Increased fructose-lysine of nail protein in diabetic patients. Klin Wochenschr. 1984;62(10):477-8. doi: 10.1007/BF01726910. PMID: 6431176. 2.Bui TP, Ritari J, Boeren S, de Waard P, Plugge CM, de Vos WM. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat Commun. 2015 Dec 1;6:10062. doi: 10.1038/ncomms10062. Copyright © 2024 Dr Kim Bruno. All rights reserved.

Macrophages Create ROS to Perceived Threats

Bacterial & Viral Pathogens

Dietary Advanced Glycation Endproducts

1.Shekhova E. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog. 2020;16(5):e1008470. doi: 10.1371/journal.ppat.1008470 2.Van der Lugt T, Weseler AR, Gebbink WA, et al. Dietary advanced glycation endproducts induce an inflammatory response in human macrophages in vitro. Nutrients. 2018;10(12):1868.

Oxidative Stress

Associated Chronic Conditions Quantifiable Marker Clusters

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Information Classification: General

Hyperlipidemia: Elevated F2-Isoprostane and Dityrosine

NIH Public Access Author Manuscript

Published in final edited form as: Free Radic Biol Med. 2011 March 1; 50(5): 559–566. doi:10.1016/j.freeradbiomed.2010.11.023.

F₂-isoprostanes as an indicator and risk factor for coronary heart disease

Sean S. Davies and L. Jackson Roberts II Division of Clinical Pharmacology and Department of Pharmacology, Vanderbilt University, Nashville, TX, 37221

Abstract

Ubstract
Coronary beam disease (CHD) is the leading single came of domh in the United States and most Weeten countries, killing more than 400,000 American per year. Although CHD often manifers where the leading star is that invested in attractive leads that there is the start per sectors the influerion of a start per sector of the influerion of the start per sectors of the influerion of the start per sectors and the start per sectors of the start per sectors and the start per sectors of the start per sectors and the start per sectors of the start per sectors of the start per sectors of the start per sectors and the start per sector start per sectors and the start per sectors and the start per sectors and the start per sector start per sectors and the start per sector start per sector of the start per sector start p

Keywords

isoprostanes; lipid peroxidation; coronary heart disease; cardiovascular disease; oxidative stress; biomarkers; antioxidants; polyunsaturated fatty acids; atherosclerosis

Introduction

For many years, screening and treatment of atherosciencesis focused on chelesterol levels in lipoptotion: afther than reducing the percolation of the polymanatomical flavor your skil (PETA) (incorrective by Dorson and Goldkonin the facts, in 1974, was that percense with finalial lopsercholesterolemia hacked the cell surface receptor for low density inpopertien (LDA) [11] and therefore fields to regulate chelesterol yubitesis and the second, in 1979, was that macrophagea possessed scoreager receptors that lowed and in internalized activities of the second o

2010 Elsevier Inc. All rights reserved.

C 2010 Elsevier las. Al rights reserved. To whose correspondence shadle be addressed. Sear B. Davies, Ph.D. Division of Clinical Planmacology Vandehili University 564A 1820 2222 Warr, Arto Nachnille, TN 7312-6602 Planez 455-122-5609 Fac, 455-522-5609 small-tricing/bandehild-ado Publicar's Declination. To a service of the annucleon samoning that them scoreported for planes, and a review to we contains we are providing this adaptive private of the annucleon trace of the adaptic opportunity, powerlaw, and private the resulting providence in a plandhal at its Include Hear. Plane are not the doing and producting process men unity be

Elevated Plasma Dityrosi with Hyperlipidemia Con Healthy Individuals	ne in Patients npared to
Gui-Rong Wu ^{a, b} Maureen Cheserek ^{b, d} Yong-F Guo-Wei Le ^{a, b}	lui Shi ^{a, b} Li-Ye Shen ^c Jing Yu ^{a, b}
*State Key Laboratory of Food Science and Technology, ¹ Research Ce School of Food Science and Technology, ¹ School Hospital, Jangnan ID Department, Faculty of Health Science, Egerton University, Njoro, Ken	nter of Food Nutrition and Functional Factors, niversity, Wuxi, China; ⁴ Human Nutrition ya
Key Words Dityrosine - Fluorescence spectrophotometry - Dyslipidemia - Oxidative stress - Atherosclerosis	0.488), and MDA (r = 0.181) levels were elevated with an in crease in the atherociclerosis index in the subject. Conduct solars: These findings subgest that divrosine formation may be an early event in the pathological process of hyperigida emin. Ditropoles us: A biomade detached the fivenergence
Abstract Background: Dityrosine, the modification of tyrosine resi- dues, may contribute to metabolic disorders. This study was undertaken to investigate plasma dityrosine concentrations in patients with hyperlipidemia and to examine the correla-	ema. Dryrosne as a bonnaker decked by nooresend spectrophotemetry might be a useful tool to evaluate the plasma redox state in hyperlipidemia. e 20145.Karper AG.Base
Bits between ditystatise and lipid profiles. Methods Flowers are used copological ways used to manaschi ditystatise in southers. The second second second second second second second second second second second second second second profess products LOOP) and makedowide MOAI were all assayed in all subject. Reside: Difformation levels were all address and the second second second second second address and the second second second second second second address and the second second second second second second address and the second se	Introduction Hyperlipidentia (HL) is associated with constant in creases in choelesterol and/or triggleerode (TC0) blood by send a sin any sin arise (RAC for the do-dove)ment of ear divascular disease, especially attensoelcrosis [1]. It has been demonstrated that codularies tesses plays an impore send are diverse [2]. In addition, sociation proclases have enimplicated in atheroscienciss [3], Mabers [4], hy pertension [5], and atheroscienciss [3], Mabers [4], hy pertension [5], and arises narundogenerative disease [3]. Disposition modifications, is produced during the trees as precise modifications, is produced during the
KARGER 125/ 0.2014.5. Karper AG, Bawl 0.200-4807/4.0644-0044355-500 T-Mail karpereikarger combans	Prof. Guo Wei Le State Key Laborates of Flood Science and Technology, Benearch Center of Food Natifies and Functional Factors, School of Food Science and Technology Janapara University, No. 1000 Lifts Avenue, West, Janapar (China) E-Mail (go of jangtan obs.cn

Original Paper

nn Nutr Metab 2015;66:44–50 Ol: 10.1159/000365731

Received: May 5, 2014 Accepted after revision: July 3, 2014

Nutrition& Metabolism

1.Wu GR, Cheserek M, Shi YH, Shen LY, Yu J, Le GW. Elevated plasma dityrosine in patients with hyperlipidemia compared to healthy individuals. Ann Nutr Metab. 2015;66(1):44-50. doi: 10.1159/000365731. 2. Davies SS, Roberts LJ 2nd. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med. 2011;50(5):559-66. doi: 10.1016/j.freeradbiomed.2010.11.023. Copyright © 2024 Dr Kim Bruno. All rights reserved.

Diabetes: Elevated 8-OHdG, CML, 8-Isoprostane

Article				
Anticic		Urinary Metabolomic Markers of Protein Glycation, Oxidation,	Article	
Accordiations between Urinary Advar	aced Clycation	and Nitration in Early-Stage Decline in Metabolic, Vascular, and	Urinary Oxidat	tive Damage Markers and Their Association wi
Associations between Ofmary Advar	iced Grycation	Bangl Haalth	Obesity-Relate	d Metabolic Risk Factors
End Products and Cardiometabolic P	arameters in	Renai rieann	and the second second second	
Metabolically Healthy Obese Women	n		Salah Gariballa * ⁰ , Abden	rahim Nemmar 🎯, Ozaz Elzaki, Nur Elena Zaaba and Javed Yasin 🎯
Estifanos Baye ¹ , Alicja B Mark ² , Malene W Poulsen ² , Jeanette	M Andersen ² ,	Jinit Masania, ¹ Gernot Faustmann, ^{2,3} Attia Anwar, ¹ Hildegard Hafner-Giessauf, ²		Internal Medicine, Department of Physiology, College of Medicine & Health Sciences, United Arab Emiran
Lars O Dragsted ² , Sussane G Bügel ^{2,9} and Barbora de Courten	C.L.+ ()	Nasir Raipoot. ⁴ Johanna Grabher. ² Kashif Raipoot. ⁵ Beate Tiran. ⁶		University, Al Am P.O. Box 17666, United Arab Emirates; anentmarifuaescac.ae (A.N.); ozarelzaki@uaescac.ae (O.E.); elenazaaba@uaescac.ae (N.E.Z.); iaved vasim@uaescac.ae (I.Y.)
¹ Monash Centre for Health Research and Implementation, School of Pub Monash Centre for Health Research and Implementation, School of Pub	slic Health and Preventive Medicine,	Barbara Obermayer-Pietsch, 7 Brigitte M, Winklhofer-Roob, 3 Johannes M, Roob, 27		* Correspondence: s.gariballa@uaeu.ac.ae; Tel: +97-137-679; Fax: +97-137-672-998
 ² Department of Nutrition, Exercise and Sports, University of Copenhag 	en, 1165 København, Denmark	Naila Rabbani, ¹ and Paul J. Thornalley 0 ^{1,8}		Abstract: Oxidation damage and inflammation are possible mechanisms linking cheater to dial
* Correspondence: barbora.decourten@monash.edu; Tel.: +61-3-8572-26	51; Fax: +61-3-9594-7554			and related complications. This study investigates the levels of oxidative damage markers in the u
† The authors contributed equally to this work.		¹ Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital.		of community free-living subjects with increased prevalence of obesity. Methods: Participants
	Check for	Coventry CV2 2DX, UK		assessed regarding clinical, anthropometric, and physical activity data at baseline and at 6 mo
Received: 25 May 2019; Accepted: 6 July 2019; Published: 10 July 2019	updates	"Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria		Blood and urine samples were taken for the measurements of oxidative markers in urine ((glutath
Abstract: Advanced elycation end products (AGEs) have been int	plicated in the pathophysiology	Human Nutrition & Metabosism Research and Training Conter (HNMRC), Institute of Molecular Biosciences, Kan Phanzons University of Care Theoremistication 2, 8010 Care Analysis		(GSH), thiobarbituric acid reactive substances (TBARS), pteridine, 8-isoprostane and 8-hydrox
of type 2 diabetes and cardiovascular disease. We aimed to	determine the associations of	⁴ Denstrant of Computer Sciences, Helpinerity of Weight Consentry CV4 7A1, HK		decxyguanosine (8-OFI-dG)), metabolic and initiaminatory markers, and related biochemical varia in the blood. University and multiple assumption analysis soon used to assume the association bath
urinary carboxymethyl-lysine (CML) and methylglyoxal-hydroin	iidazolone (MG-H1) levels with	School of Computer Science, University of Warnick, Conentry CP4 7AL, OK		in the blood. Univariate and multiple regression analyses were used to assess the association betw oxidation markers and other clinical neuronotic indicators. Results: Ocerall, 168 narticinants w
cardiometabolic parameters in metabolically healthy obese worr	en. Anthropometric, glycemic,	"Clinical Institute of Medical and Clinical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria		complete 6-month follow-up with a mean (±SD) age of 41 ± 12 (119 (71%) females) were include
cardiovascular, and urinary AGE parameters were measured in	58 metabolically healthy obese	⁷ Clinical Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria		the study. In multiple regression analysis, log-transformed urinary pteridine levels were significa
women (age: 39.98 ± 8.72 years; body mass index (BMI): 32.29 ± 4.05 ?	kg/m ²). Urinary CML levels were	*Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Qatar Foundation,	C, check for	correlated with log-transformed urinary GSH, 8-isoprostane, and TBARS after adjusting for uri
positively associated with BMI ($r = 0.29$, $p = 0.02$). After adjustment f	or age and BMI, there was a trend	P.O. Box 34110, Doha, Qutar	Contractor S. Manuar A.	creatinine at both baseline and follow-up. Significant correlations were also found between oxida
for positive associations between urinary CML levels and fasting (p	= 0.06) and 2 h insulin (p = 0.05)	*Deceased	Elzaki, O., Zaaba, N.E., Yasiri, I.	damage markers and cardiovascular disease risk factors, including systolic blood pressure, Hb
levels, and insulin resistance measured by homeostatic model ass	sessment (HOMA-IK) ($p = 0.06$).		Urinary Oxidative Damage Markers	plasma glucose, us-C-reactive proteins, total cholesterol, and HDL. Higher TBARS levels were to
Uninary MC-H1 levels were positively associated with systolic and	a diastolic blood pressure, pulse	Correspondence should be addressed to Paul J. Inormaney; ptnormaney; ptnormaney; ptnormaney;	and Their Association with	in makes and diabetic subjects, with lower Corr in diabetic hypertensive and obese subjects, the latter neadl did not noch statistical significance. We found nominificantly higher TB.
are BMI and HOMA IR (all n < 0.05). There were no associations."	between urinary CML levels and	Received 23 May 2019; Revised 7 September 2019; Accepted 11 September 2019; Published 19 November 2019	Obesity-Related Metabolic Rak	8-isoprostane, and pteridine levels in smokers compared to those in nonsmokers. All measured
cardiovascular parameters, and between urinary MG-H1 levels and c	lycemic measurements. Our data		https://doi.org/10.3990/antion	urinary oxidative damage markers levels were higher in obese subjects compared with not
support a role of urinary AGEs in the pathophysiology of insuli	n resistance and cardiovascular	Academic Editor: Marco Malaguti	11050844	weight subjects, but results did not reach statistical significance. Conclusion: we found signifi
disease; however, future studies are highly warranted.		Conversible © 2019 Linit Masania et al. This is an onen access article distributed under the Creative Commons Attribution License	Academic Editor, Alessandra	associations between urinary osidative damage and metabolic risk factors, and higher leve
	and the second second second second second	which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The	Napolitano	urinary oxidative damage markers in diabetic, hypertensive, smoker, and male subjects.
Keywords: advanced glycation end products; carboxymethyl	-lysine; methylglyoxal-derived	publication of this article was funded by Qatar National Library.	Received: 4 April 2022	Keywords: urinary oxidative damage markers: antioxidants: obesity: diabetes: hypertension
hydroimidazolone; insulin resistance; type 2 diabetes; cardiovascul	ar disease	Character with the structure and securitables of contribute an involved in the authority of the hard balance of the hard	Accepted: 22 April 2022	
		orycators, oxyators, mirators, and crossinsing or proteins are implicated in the pathogenic mechanisms of type 2 diabetes, cardiovascular disease and chronic kidnese diarte modified aming acids formed by motionlysis are excerted in urine	Published: 26 April 2022	
		We guantified urinary levels of these metabolites and branched-chain amino acids (BCAAs) in balthy subjects and assessed	Publisher's Note: MDPI stays resultal	
1. Introduction		changes in early-stage decline in metabolic, vascular, and renal health and explored their diagnostic utility for a noninvasive	with regard to jurisdictional claims in	I. Introduction
Advanced glycation end products (AGEs) are formed wh	en proteins or lipids become	health screen. We recruited 200 human subjects with early stage health decline and healthy controls. Urinary amino acid	putrosect maps and institutional atta- intions	The prevatence of obesity, diabetes, and other cardiovascular disease (CVD) risk fac is increasing spatially and maching onidemic leads in Culf countries, including the Un-
non-enzymatically glycated after exposure to sugars [1]. AGEs are	formed endogenously at lower	metabolites were determined by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. Machine		Arab Emirates (UAE) [1-3]. For example, the very recent report of 'Diabetes around
rates under normal physiological conditions [2], but their formati	on is increased in patients with	tearning was appres to optimise and vandate algorithms to discriminate between study groups for potential diagnostic utility.	© •	world in 2021' revealed that, in the Middle East and North Africa, 1 in 6 adults (73 mill
impaired glucose metabolism [3]. Accumulation of AGEs has been	implicated in the development	semialdehyde, and pyrraline: impaired vascular health-increased glucosepane; and impaired renal health-increased BCAAs	Consiste & 2011 to the autom	are living with diabetes compared with the global 1 in 10 (537 million adults (20-79 year
of several chronic diseases, including type 2 diabetes (T2DM), car	diovascular disease (CVD), and	and decreased N, (y-glutamyl)lysine. Algorithms combining subject age, BMI, and BCAAs discriminated between healthy	Licensey MDPL Basel, Switzerland.	Furthermore, 1 in 3 adults living with diabetes in the Middle East are undiagnosed, and
neurodegenerative disease (Alzheimer's and Parkinson's diseases) th	arough altering the structure and	controls and impaired metabolic, vascular, and renal health study groups with accuracy of 84%, 72%, and 90%, respectively. In	This article is an open access article	in 7 live births are affected by hypergrycemia in pregnancy [4]. The UAE has one of highest powedeness of chastin-related diabetes mellitus in the avoid [3].
functions of proteins or by increasing inflammation and oxidative str	ress [4].	2-step analysis, algorithms combining subject age, BMI, and urinary Ne fructosyl-lysine and valine discriminated between	distributed under the terms and	Oxidative damage may be causatively linked to obesity-related complications
Carboxymetnyi-iysine (CML) and methylglyoxal-derived hyd	Formidazotone (MG-F11) are the	healthy controls and impaired health (any type), accuracy of 78%, and then between types of health impairment with accuracy	conditions of the Creative Continens	cluding insulin resistance and diabetes [5] In addition, oxidative damage may pre
CML and MC-H1 which are derived from husing and amining, are it	to in proof, unite, and notes [4].	or ozra-zero (g. ramooft selection 3.5%). From inscrinood ratios, inis provided small, moderate, and conclusive evidence of early- tion continueronals, and rand disease with disease in the ratios of 6 - 7 % and 14 - 70 sero-take We	contribution (LL, DT) scores (https://	the development and progression of diabetes-related complications [5-7]. There is
exposure [5]. The measurement of protein bound AGEs requires co	uplicated sample menaration or	conclude that measurement of uniary elevated, oxidized, crosslinked, and branched-chain amino acids provides the basis for a	40/3	some evidence that oxidative stress predates the appearance of diabetes complication
esperant [1] The mean end of power bound reces requires on	dame and a holomore	noninvasive health screen for early-stage health decline in metabolic, vascular, and renal health.		

1.Baye E, Mark AB, Poulsen MW, Andersen JM, et al. Associations between Urinary Advanced Glycation End Products and Cardiometabolic Parameters in Metabolically Healthy Obese Women. J Clin Med. 2019;8(7):1008. doi: 10.3390/jcm8071008. 2. Masania J, Faustmann G, Anwar A, et al. Urinary Metabolomic Markers of Protein Glycation, Oxidation, and Nitration in Early-Stage Decline in Metabolic, Vascular, and Renal Health. Oxid Med Cell Longev. 2019;2019;4851323. doi: 10.1155/2019/4851323. 3. Gariballa S, Nemmar A, Elzaki O, Zaaba NE, Yasin J. Urinary Oxidative Damage Markers and Their Association with Obesity-Related Metabolic Risk Factors. Antioxidants (Basel). 2022 Apr 26;11(5):844. doi: 10.3390/antiox11050844.

Alzheimer's:

Elevated 8-OHdG, 8OHG, 4-HNE, MDA, Isoprostanes, Nitrotyrosine

Hindevi Iseand dimensiong Research	frontiers office and the second secon	L NESARCH	P frontiers
Value 202, Alock ID 223000, If page https://disearg/thilling/alock/2223000		OXIDATIVE STRESS MARKERS FO	in Aging Neuroscience as utawing sentersi
Review Article		FABLY DETECTION OF AD	
Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases Yanling Li ¹ Tingting Zhao, ² Jiaxin Li, ¹ Mengvao Xia, ¹ Yuling Li ² Xiaoyu Wang, ¹ Chuanguo Liu, ¹ Tingting Zheog, ² Renjie Chen, ³ Dongfang Kan, ⁴ Yicheng Xia, ² Jingtie Seeg. ⁶ Ya tu Free, ⁶ Tiangui Yao, ⁴ and Peng Sung ⁴	Nitrative Stress and Tau Accumulation in Amyotrophic La Sclerosis/Parkinsonism-Demen Complex (ALS/PDC) in the Kii Peninsula, Japan	teral a Studies have reported various products derived fr lipids, DNA, or RNA that indicate OS in the brain. OS damage to the protein can be determined by a nitrotyrosine, protein carbonyls, methionine sulfox	Early Detection and Prevention of Alzheimer's Disease: Role of Oxidative Markers and Natural Antioxidants
¹ Seloud of Planetics, Shandang University of Traditional Chinese Medicine, J. Kura 202035, China ¹ Collage of Prioring Languages, Schward Strading, Chinese Medicine, J. Kura 20205, China ² Paperkiettie entrie, Alfhand Haghal of Shahadang University of Industational Chinese Medicine, Jiana 20204, China ¹ Tee Children's Hospital, Zelinger University Medica (Shahada and Shahada and Shahada and ¹ Tee Children's Hospital, Zelinger University Medica (Shahada and Shahada and ¹ Tee Children's Hospital, Zelinger University Medica (Shahada and Shahada and Shahada and ¹ Tee Children's Hospital, Zelinger University Medica (Shahada and Shahada and ¹ Tee Children's Hospital, Zelinger University Medica (Shahada and Shahada and ¹ Tee Children's Hospital, Zelinger Shahada and Shahada and Shahada and ¹ Teega (Shahada and Handa Chine), Singa sengilingini shahamada and ¹ Tenga (Shahada and Handa and Tenga (Shangara), Shahada and Shahada and ¹ Tenga (Shahada and Handa and Tenga (Shahada and Shahada and Shahada and ¹ Tenga (Shahada and Handa and Tenga (Shahada and Shahada and ¹ Tenga (Shahada and Shahada and Tenga (Shahada and Shahada and ¹ Tenga (Shahada and Shahada and Shahada and Shahada and Shahada and ¹ Tenga (Shahada and Shahada and Shahada and Shahada and Shahada and ¹ Tenga (Shahada and Shahada and Shahada and Shahada and Shahada and ¹ Tenga (Shahada and Shahada and Shahada and Shahada and Shahada and Shahada and ¹ Tenga (Shahada and Shahada and ¹ Tenga (Shahada and Shahada and ¹ Tenga (Shahada and Shahada and Shahada and Shahada and Shahada and ¹ Tenga (Shahada and Shahada and Shahada and ¹ Tenga (Shahada and Shahada and ¹ Tenga (Shahada and ¹	Visikie Arta', King Ma', Maio Yaona', Sabaru Mornoo ¹¹⁴ , Holphan King, Jan King Marana, Sabaru Kananaki, Sabaru Kananak	reactive aldehydes; lipid damage by determining and lipid and cyclic peroxides; DNA damage by hydroxy-deoxyguanosine (8OHdG); and RNA dam determined by measuring 8-hydroxyguanine (8OH and Halliwell, 2019).	Tringuestions and themas. Downs there is the second ingraves in the inserve, training the image is a second in the second ingraves in the inserve is the second ingraves in the inserve is the second in the image is a second in the image is seco
Copyright & Without it of The is may note that had a label to Partie Tourney Indeed Tourney Constant Sector Constant Sector Constant Constan	tacgetty. Native stees and oxidate stress on ALSPOC and the r steers. with Ki ALSPOC (3 raises and 4 fem steers. with Ki ALSPOC (3 raises and 4 fem steers. with Ki ALSPOC (3 raises and 4 fem steers. with Ki ALSPOC and 4 fem steers. with Ki ALSPOC and 4 fem steers. with Ki ALSPOC and 4 fem steers. See (3 raises and 4 fem steers. See (3 raises) and 4 fem steer	Considering to compare the second of the	to Proteins carbonyls and 3-nitrotyrosine in the ordria (Sultana et al., 2013) and in and Scheff, 2010) and hippocampus t al., 2016) indicate that OS damage gn of AD. Oxidative inactivation of A and 4-HNE have been reported in MCI or early AD (Keller et al., 2005; eitherger et al. 2008; Reed et al. 2008;
lectively aggravate the risk of AD and P	PD. The electrophilic-	Lopez et al., 2008; Gre	et al., 2016). Mitochondria isolated

1.Li Y, Zhao T, Li J, et al. Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases. J Immunol Res. 2022;2022:2233906. doi: 10.1155/2022/2233906. 2.Arslan J, Jamshed H, Qureshi H. Early Detection and Prevention of Alzheimer's Diseases: Role of Oxidative Markers and Natural Antioxidants. Front Aging Neurosci. 2020;12:231. doi: 10.3389/fnagi.2020.00231. 3.Hata Y, Ma N, Yoneda M, et al. Nitrative Stress and Tau Accumulation in Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC) in the Kii Peninsula, Japan. Front Neurosci. 2018;11:751. doi: 10.3389/fnins.2017.00751.

Clinical Application in Lab Evaluation

Sample Report

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Information Classification: General

Comprehensive Evaluation – Sample Report

Antioxidant	Genetics	O O Homo.	zygous Mutant 🛛 💿	Heterozygous	Homozygous Wile
Test Name	Gene Name	Risk Association	Your Mutation	Your Risk	Reference
rs2234694	SOD1	Increased superoxide levels	ΘΘA/A	Normal	A/A
rs4880	SOD2	Impaired anti-oxidant activity	⊕⊖C/T	Partially elevated	C/C
rs1799895	SOD3	Elevated ROS production	ΘΘC/C	Normal	C/C
rs8192287	SOD3	Disrupted EC-SOD activity	⊕⊕T/T	Elevated	G/G
rs1001179	CAT	Mitochondrial dysfunction	⊖⊖C/C	Normal	C/C
rs4756146	CAT	Mitochondrial dysfunction	⊕⊕T/T	Elevated	C/C
rs7943316	CAT	Mitochondrial dysfunction	⊕⊕T/T	Elevated	A/T, A/A
rs10911021	GLUL	Decreased levels of glutamine synthetase and glutathione	⊕⊖C/T	Partially elevated	C/C
rs1050450	GPX1	Aberrant redox signaling	⊖⊖C/C	Normal	C/C
rs1987628	GPX1	Reduced antioxidant enzyme leads to selenium deficiency	⊕⊕C/C	Normal	C/C
rs2071566	GPX2	Higher selenoprotein concentrations	⊖⊖G/G	Normal	G/G
rs4902346	GPX2	Higher selenoprotein concentrations	$\Theta\Theta T/T$	Normal	T/T
rs713041	GPX4	Elevated ROS production	ΘΘC/C	Elevated	C/T, T/T
rs121909307	GSS	Lower glutathione levels	$\oplus \oplus C/C$	Elevated	T/T

Lipid Peroxidation	Current	Previous	75th Result 95th	Reference
11-β-Prostaglandin F2α (ug/g)	0.14	0.14 (01-24-2024)	0.11 0.4	≤0.4
15(R)-Prostaglandin F2ɑ (ug/g)	0.07	0.06 (01-24-2024)	0.07 0.22	≤0.22
8-iso-prostaglandin F2α (8-iso- PGF2α) (ug/g)	0.06	(01-24-2024)	0.1 0.26	≤0.26
Glutathione 4-hydroxynonenal (GS-HNE) (ug/g)	2.40	>10 (01-24-2024)	0.3 2.5	≤2.5
Malondialdehyde (ug/g)	34.39	37.79 (01-24-2024)	72.87 163.53	≤163.53
Nucleic Acid Damage	Current	Previous	75th Result 95th	Reference
8-Hydroxy-2 -deoxyguanosine (ug/g)	4.60	(01-24-2024)	1.14 4	
8-Hydroxyguanine (ug/g)	10.56	9.60 (01-24-2024)	16 49.4	≤49.4
8-Hydroxyguanosine (ug/g)	157.21	(01-24-2024)	44.9 95.3	
Protein Oxidation Product	Current	Previous	75th Result 95th	Reference
Bromotyrosine (ug/g)	95.69	81.91 (01-24-2024)	167.53 349.6	≤349.6
2 11	2.20	2.09		and a balance

Nutrients	Dosage	Purpose
Vitamin E	22 IU/day	Vitamin E supplements reduce 8-iso-prostagilandin F2a (8-iso-PGF2a) levels by acting as an antioxidant neutralizing reactive oxygen species that would otherwise promote the formation of 8-iso-PGF2a. Vitamin E supplements schenace cellular antioxidant defaness by reducing ligh deroxidation, indirectly leading to increased catalase enzyme activity, which helps neutralize harmful reactive oxygen species (RGS). Vitamin E supplements enhance cellular membranes, which hidirectly increases SOD antioxidant markers, helping to neutralize harmful argencide adamutase SOD enzymes by reducing jipid peroxidation and protecting cellular membranes, which indirectly increases SOD antioxidant markers, helping to neutralize harmful supercoide radicals.
Vitamin C	90 mg/day	Vitamin C supplementation decreases 8 biosprotalplandin F2a (Bi-ox-D672a) levels by acting as a powerful attributional, seavening free relacties and inhibiting lipid periodiation. Unterlay relacional modulate stress. Vitamin C enhances GPX1 activity by donating electrons to reduce glutatione (GRM), which is then used by GPX1 to enablish amminif activity by donating electrons to reduce glutatione (GRM), electrons outstress damage. Vitamin C supplements enhance AMPK activity by pomoting the energy saming and metabolic regulation. Vitamin C asupplements enhance callades activity by donating electrons to the enzyme's active site, increasing its ability to break down hydrogen percode into water and oxyger, thus bottering the anticidual defense system. Vitamin C supplements enhance the activity of supercode diamatae (GDD) enzymes by providing electrons necessary for SDD autoxidant function, thereby increasing additional defense systems. Vitamin C supplements enhance the activity of supercode diamatae (GDD) enzymes by providing electrons necessary for SDD autoxidant CodD or advective and enables in equidates activity and the boding outdoits esters maintes. Vitamin C codD or advective and elevis and overall head to continue its role in cellular energy production. This help maintain optimal cellular energy levises and overall heads.
Selenium	55 mcg/day	Selenium reduces 8-loso portubujendin F26 (6-no-067-0) levels by acting as a cafastor for the exyme- durations paradicals, which helps carearlase reserves appra pacies responsible for this formation of 5-iso-P672a. Selenium supplements increase 06/V1 activity by incorporating selenium atoms into the 6/V1 enzyme's activities itse, enainancing its ability to catalyze the reduction of harmful reactive oxygen species. Selenium, when incorporated into selenoproteins, enhance the activity of catalase by service catalase's antioxidant function. Selenium supplements enhance the synthesis of selenoproteins, exatisse's antioxidant function. Selenium supplements enhance the synthesis of selenoproteins, events, boosting callediar antioxidant defores against supervisite raidoads. Selenium supplements increase 0FXA activity by incorporating selenium atoms into the GRXA enzyme's active site, enhancing its ability to catalyze the reduction of harmful reactive oxygen species.
		Vitamin D3 supplementation upregulates catalase expression by activating the vitamin D receptor (VDR) in cells, leading to increased transcription of catalase genes, thus enhancing antioxidant defenses an enject oxidative cates. Vitamin D runnelmentation enhances the expression of suparceided activities of the enterthance of the en

Antioxidant Defense System – patient's unique Flowchart

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Ideally, free radicals get converted to a more stable forms via these antioxidant pathways. Your antioxidant genetics determine how these pathways function.

If everything works in the pathway, the patient will always end up with water and stable lipid products.

However, if you have an elevated risk SNP (and the enzymes don't work optimally), proper flow does not happen.

And when the flow is blocked, the patient is predisposed to experience increased oxidative stress and damage.

Elevated Risk GSS & GST = More Extracellular

Free Radical	Soluble Extracellular Toxins	Nutrient Support for GST Enzyme Activity
$\begin{array}{c} \downarrow \\ 0_2 \\ \downarrow \\ \hline \\ SOD1 \end{array} \begin{array}{c} 3 \\ \hline \\ SOD2 \end{array} \begin{array}{c} 4 \\ \hline \\ SOD3 \end{array} \begin{array}{c} 5 \\ \hline \\ \hline \\ \end{array} \end{array}$	Lipid Radicals Reduced Glutathione GPX ⑦ GR ⑧ Oxidized Glutathione	 Broccoli Extract Pomegranate-Black Carrot Juice S-Adenosylmethionine Grape Pomace Extract Glutathione
	Stable Lipid Products Oz - Superoxide Radical H2O2 - Hydrogen peroxide -OH - Hydroxy Radical H2O - Water	

Elevated Risk SOD2 & SOD3 = More Lipid Radicals

Elevated Risk CAT & GPX = More Oxidative Damage

Antioxidant Genetics: Full Report & Interpretation

Antioxidant Genetics		🗢 🗢 Homo	zygous Mutant		⊖ ⊖ Homozv~ , wild
Test Name	Gene Name	Risk Association	Your Mutation	n Your Risk	Reference
rs2234694	SOD1	Increased superoxide levels	⊖⊖A/A	mal	A/A
rs4880	SOD2	Impaired anti-oxidant activity	⊕⊖C/T	artially elevated	C/C
rs1799895	SOD3	Elevated ROS production		Normal	C/C
rs8192287	SOD3	Disrupted EC-SOD activity	⊕⊕T/	Elevated	G/G
rs1001179	CAT	Mitochondrial dysfunction	⊖⊖C/C	Normal	C/C
rs4756146	CAT	Mitochondrial dysfunction	⊕⊕T/1	- Elevated	C/C
rs7943316	CAT	Mitochondrial dysfunction	⊕⊕T/T	Elevated	A/T, A/A
rs10911021	GLUL	Decreased levels of glutamine synthetase and glutathione	⊕⊝C/T	- Partially elevated	C/C
rs1050450	GPX1	Aberrant redox signaling	$\Theta\Theta C/C$	Normal	C/C
rs1987628	GPX1	Reduced antioxidant enzyme leads to selenium deficiency	⊕⊕C/C	Normal	C/C
rs2071566	GPX2	Higher selenoprotein concentrations	$\Theta \Theta G/C$	Normal	G/G
rs4902346	GPX2	Higher selenoprotein concentrations	$\Theta\Theta T/T$	Normal	T/T
rs713041	GPX4	Elevated ROS production	⊖⊖C/	Elevated	C/T, T/T
rs121909307	GSS	Lower glutathione levels	⊕⊕C/C	Elevated	T/T
rs2071746	HMOX1	Decreased heme oxygenase 1 activity	⊕⊕T/T	Elevated	A/A
rs366631	GSTM1	Decreased antioxidant activity	$\Theta\Theta T/T$	Normal	T/T
rs3754446	GSTM5	Decreased antioxidant activity	⊕⊝G/1	Partially elevated	І Т/Т
rs4485648	TrxR2	Impaired mitochondrial redox balance	⊕⊖C/T	Partially elevated	і т/т
rs4673	СҮВА	Elevated ROS production	$\oplus \Theta$	Partially elevated	І Т/Т
rs9932581	СҮВА	Elevated ROS production	⊖⊝G/C	Normal	G/G
rs10789038	PRKAA2	Impaired antioxidant activity	⊖⊖A/A	Normal	A/A
rs2796498	PRKAA2	Impaired antioxidant activity	⊕⊕G/C	Elevated	A/A
rs206812	XDH	Elevated ROS production	⊕⊖A/C	Partially elevated	G/G

Test Name	Gene Name	Risk Association	our Mutation	Your Risk	Reference			
rs8192287	SOD3	Disrupted EC-SOD activity		Elevated	G/G			
The SOD3 gene, also known as the superoxide dismutase 3 gene, is responsible for producing the extracellular superoxide dismutase (EC-SOD) enzyme. EC-SOD is an antioxidant enzyme that plays a critical role in protecting tissues and cells from the harmful effects of reactive oxygen species (ROS). EC-SOD is primarily found in the extracellular space, where it acts as a defense mechanism against oxidative stress by converting superoxide radicals into hydrogen peroxide and oxygen, which are less damaging to cells. Mutations in the SOD3 gene can disrupt the normal function of EC-SOD and impair its ability to protect against oxidative stress. Homozygous mutant (abnormal) individuals have disrupted EC-SOD function that impairs their ability to protect against oxidative stress. Homozygous mutant carriers are advised to follow a meditarranean diet and consume vegetables that has antioxidant properties.								
rs713041	GPX4	Elevated ROS production		Elevated	С/Т, Т/Т			
The GPX4 gene phospholipid h peroxidation (or reactive oxyger redox signaling reduced oxidat Susceptible inc recommended.	e encodes for glutat ydroperoxides (reac xidative degradatio n species (ROS) and and increase ROS ive damage.Homoz lividulas are recom	hione peroxidase 4 which is an ant tive oxygen species which can giv n of lipids). GPX4 modulates redox respond to ROS-mediated change eading to oxidative stress. Mutatic ygous wild (abnormal) individuals nended to consume a Mediterrane	tioxidant selenoprotei e rise to oxidative strr c-dependent mitochor is in the cellular redoo ons in the gene lead to experience oxidative tean diet and the neces	in. GPx4 is the only en ess). It protects cells a ndrial function where r k state. Mutations in t o higher selenoproteir stress due to reduced ssary supplements. Da	zyme that reduces against membrane lipi mitochondria generate e gene cause aberran enzyme levels and prostaglandin levels. aily exercise is			
rs4673	СУВА	Elevated ROS production	⊕⊝C/T	- Partially elevate	ed T/T			
	anaadaa tha n22nl	nox subunit of NADPH oxidase, an	enzyme that plays ar	n essential role in the i	mmune system. Upon			

Full Report: Oxidative Damage Markers

Oxidative Stress Biomark	ers			
Lipid Peroxidation	Current	Previous	Result 75th 95th	Reference
11-β-Prostaglandin F2α (ug/g)	0.11		0.11 0.4	≤0.4
15(R)-Prostaglandin F2α (ug/g)	<0.05		0.07 0.22	≤0.22
8-iso-prostaglandin F2α (8-iso- PGF2α) (ug/g)	0.12		0.1 0.26	≤0.26
Glutathione 4-hydroxynonenal (GS-HNE) (ug/g)	0.23		0.3 2.5	≤2.5
Malondialdehyde (ug/g)	60.15		72.87 163.53	≤163.53
Nucleic Acid Damage	Current	Previous	Result 75th 95th	Reference

Oxidative Damage Markers

				CURRENT RESULT	PREVIOUS RESULT
Oxidative Damage Marke	rs				
Lipid Peroxidation	Current	Previous	75th Resul	t _{95th}	Reference
11-β-Prostaglandin F2α (ug/g)	0.14	<mark>0.14</mark> (01-24-2024)	0.11	0.4	≤0.4
15(R)-Prostaglandin F2α (ug/g)	0.07	0.06 (01-24-2024)	0.07	0.22	≤0.22
8-iso-prostaglandin F2α (8-iso- PGF2α) (ug/g)	0.06	<mark>0.26</mark> (01-24-2024)	0.1	0.26	≤0.26
Glutathione 4-hydroxynonenal (GS-HNE) (ug/g)	2.40	<mark>>10</mark> (01-24-2024)	0.3	2.5	≤2.5
Malondialdehyde (ug/g)	34.39	37.79 (01-24-2024)	72.87	16'	≤163.53
Nucleic Acid Damage	Current	Previous	75th Resul	t 🦡	Reference
8-Hydroxy-2 -deoxyguanosine (ug/g)	4.60	<mark>3.93</mark> (01-24-2024)	1.14	4	≤4

0

Damage Markers: Full Report & Interpretation

Order The Terminant of the Term	Let						
Light Provides Current Provides	Oxidative Damage Mark	kers					
11 - 0 - budgeten frage 100 - budgeten frage 0.00 100 - budgeten frage 110 - budgeten frag	Lipid Peroxidation	Current Previous 75th Rout Re	eference				
1909 Practication Product 0.07 0.02 model 0.0	11-β-Prostaglandin F2α (ug/g)	0.14 (01-24-2024) 0.11 0.4	≤0.4				
Based of the former of the	15(R)-Prostaglandin F2α (ug/g)	0.07 (01-24-2024) 0.07 0.22	≤0.22				
Mathematical State Sta	8-iso-prostaglandin F2α (8-iso- PGF2α) (ug/g)	0.06 (01-24-2024)	≤0.26				
Mathematical data wave based addata were (wight) Marken Add Tamage Marken	Glutathione 4-hydroxynonenal (GS-HNE) (ug/g)	Datient Name: DEMO DEMO					
Nucleic Add Damage Date of BinNii: Order 11111111111111111111111111111111111	Malondialdehyde (ug/g)	Date of Pirth: 01 01 1111 Accession	D: 2402266014	Ovidatio	Ctrops	Drofile	0
Bervice Date: 2023-11-2222.42 (GMT) Oxidative Damage Markers Lipid Peroxidation Current Previous Result gsth Reference Diverse (ugi) Nitrative Stees Blomat Nitrative Stees Blomat Diverse (ugi) O.14 (0.14 (0.14 (0.11 0.4 Previous 375th Previous 375th Previous 375th Result gsth Reference Diverse Guidation Product Nitrative Stees Blomat Nitrative Stees Blomat O.11 0.4 Lipid peroxidation is a degenerative process wherein free radicals attack and break down lipids under oxidative stress. The process affects cell membranes, lipoproteins, and other lipid-containing structures. The non-enzymatic oxidation of arachidonic acid leads to the production of 11-9F2a0. It is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Thus, elevated levels of 11-PGF2a is also regarded as a marker of oxidative stress linked to inflammation. It may contribute to cardiac diseases owing to their involvement in vasoconstriction and cardiomyocyte levels can lead to inflammation. It may contribute to cardiac diseases owi	Nucleic Acid Damage	Date of Birtin. 01-01-1111 Accession in	D. 2402200014	UXIGativ	e Stress	Prome	- Summary
B+lydrogrammic (ugi) Oxidative Damage Markers Protein Oxidation Product Ipid Peroxidation Current Previous 75th Result 95th Reference 11-β-Prostaglandin F2α (ug/g) 0.14 0.14 0.11 0.4 ≤0.4 Nitrative Stress Blomat Lipid peroxidation is a degenerative process wherein free radicals attack and break down lipids under oxidative stress. The process So.4 Lipid peroxidation is a degenerative process wherein free radicals attack and break down lipids under oxidation of arachidonic acid leads to the production of 11-β-prostaglandin F2α (11-PGF2α). It is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Thus, elevated levels of 11-PGF2α are indicative of the increased oxidation of arachidonic acid by free radicals. Its increased levels construction and cardiomyocyte hypertrophy (thickening of heart muscles). 11-PGF2α is also regarded as a marker of oxidative stress linked to inflammation.	8-Hydroxy-2 -deoxyguanosine (ug/g)	Service Date: 2023-11-22 22:42 (GMT)					
Bit Hydrogrammatice (upp) Oxidative Damage Markers Protein Oxidation Product Lipid Peroxidation Current Previous Result 95th Reference 11-β-Prostaglandin F2α (ug/g) 0.14 (0.14/(01-24-2024)) 0.11 0.4 ≤0.4 Protein Oxidation Product Battrogrammatice (upp) 0.14 (0.124-2024) 0.11 0.4 ≤0.4 Protein Oxidation Froduct Battrogrammatice (upp) 0.14 (0.124-2024) 0.11 0.4 ≤0.4 Videoundation (upp) Explore the process wherein free radicals attack and break down lipids under oxidative stress. The process affects cell membranes, lipoproteins, and other lipid-containing structures. The non-enzymatic oxidation of arachidonic acid leads to the production of 11-β-prostaglandin F2α (11-PGF2α). It is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Thus, elevated levels of 11-PGF2α are indicative of the increased oxidation of arachidonic acid by free radicals. Its increased levels can lead to inflammation. It may contribute to cardiac diseases owing to their involvement in vasoconstriction and cardiomycotyte hypertrophy (thickening of heart muscles). 11-PGF2α is also regarded as a marker of oxidative stress linked to inflammation.	8-Hydroxyguanine (ug/g)	Oxidative Damage Markers					
Protein Oddation Product Lipid Peroxidation Current Previous Result Result Reference 11-β-Prostaglandin F2α (ug/g) 0.14 0.14 0.11 0.4 ≤0.4 Virtative Stress Biomatic (ug/g) 0.14 0.14 ≤0.4 Virtative Stress Biomatic (ug/g) 0.14 0.14 ≤0.4 Virtative Stress Biomatic (ug/g) 0.14 0.11 0.4 ≤0.4 Lipid peroxidation is a degenerative process wherein free radicals attack and break down lipids under oxidative stress. The process affects cell membranes, lipoproteins, and other lipid-containing structures. The non-enzymatic oxidation of arachidonic acid leads to the production of 11-β-prostaglandin F2α (11-PGF2α). It is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Thus, elevated levels of 11-PGF2α are indicative of the increased oxidation of arachidonic acid by free radicals. Its increased evels can lead to inflammation. It may contribute to cardiac diseases owing to their involvement in vasoconstriction and cardiomyocyte hypertrophy (thickening of heart muscles). 11-PGF2α is also regarded as a marker of oxidative stress linked to inflammation.	8-Hydroxyguanosine (ug/g)						
Bit indexposition Current Previous Result Result Reference 11-β-Prostaglandin F2α (ug/g) 0.14 0.14 0.11 0.4 ≤0.4 Vitrative Stress Biomar Protein Oxidation Product 0.14 0.11 0.4 ≤0.4 Vitrative Stress Biomar Protein Oxidation reduct 0.11 0.4 ≤0.4 Vitrative Stress Biomar Lipid peroxidation is a degenerative process wherein free radicals attack and break down lipids under oxidative stress. The process ≤0.4 Vitrative Stress Circle In β-Prostaglandin F2α (Ug/g) 0.14 (0.124) ≤0.4 Vitrative Stress Circle Immobination is a degenerative process wherein free radicals attack and break down lipids under oxidative stress. The process Stress circle ≤0.4 Advanced Gycation Product Stress Production of 11-β-prostaglandin F2α (11-PGF2α). It is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Thus, elevated levels of 11-PGF2α are indicative of the increased oxidation of arachidonic acid by free radicals. Its increased evels can lead to inflammation. It may contribute to cardiac diseases owing to their involvement in vasoconstriction and cardiomyocyte hypertrophy (thickening of heart muscles). 11-PGF2a is also regarded as a marker of oxidative stress linked to inflammation. Notegenergy Stress St	Protein Oxidation Product						
Chlorotyrosine (ug/g)The prostaglandin F2α (ug/g)0.140.14 0.14 0.11 0.4 ≤ 0.4 Nitrative Stress BiomarProtein Oxidation Product8-Miroguancine (ug/g)8-Miroguancine (ug/g)Nitroguancine (ug/g)8-Miroguancine (ug/g)8-Miroguancine (ug/g)8-Miroguancine (ug/g)8-Miroguancine (ug/g)Nitroguancine (ug/g)8-Miroguancine (ug/g)Nitroguancine (ug/	Bromotyrosine (ug/g)	Lipid Peroxidation	Current	Previous	Result		Reference
Diversite (ug/g)Nitrative Stress BlomatProtein Oxidation Product8-Miroguancine (ug/g)8-Miroguancine (ug/g)Nitroguancine (ug/g)8-Miroguancine (ug/g)9-Miroguancine (ug/g)	Chlorotyrosine (ug/g)				75th	95th	
Nitrative Stress Biomari Protein Oxidation Product e-Nitroguannine (ug/g) Hitroguannine (ug/g) Nitrotyrosine (ug/g) Nitrotyrosine (ug/g) Nitrotyrosine (ug/g) Advanced Glycation Product Protein Oxidation of 11-β-prostaglandin F2α (11-PGF2α). It is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Thus, elevated levels of 11-PGF2α are indicative of the increased oxidation of arachidonic acid by free radicals. Its increased levels can lead to inflammation. It may contribute to cardiac diseases owing to their involvement in vasoconstriction and cardiomyocyte hypertrophy (thickening of heart muscles). 11-PGF2α is also regarded as a marker of oxidative stress linked to inflammation.	Dityrosine (ug/g)	4	014	0.14	•		
Protein Oxidation Product extirreguancies (ug/g) extirreguancies (ug/g) Nitrotyrosine (ug/g) Advanced Glycation Product Network (ug/g) Network (ug/g) Advanced Glycation Product Network (ug/							≤0.4
^{8-Miroguanine (ug/g)} ^{8-Miroguanine (ug/g)} ^{8-Miroguanine (ug/g)} ^{Nitotyrosine (ug/g)} ^{Nitotyrosine (ug/g)} Advanced Glycation Product ^{Nototyrosine (ug/g)} Advanced Glycation Product ^{Nitotyrosine (ug/g)} ^{Protein Oxidation Product ^{Nitotyrosine (ug/g)} ^{Nitotyrosine (ug/g)} ^{Ni}}	Nitrative Stress Biomark	11-β-Prostaglandin F2α (ug/g)	0.14	(01-24-2024)	0 11	0.4	≤0.4
affects cell membranes, lipoproteins, and other lipid-containing structures. The non-enzymatic oxidation of arachidonic acid leads to the production of 11- β -prostaglandin F2 α (11-PGF2 α). It is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Thus, elevated levels of 11-PGF2 α are indicative of the increased oxidation of arachidonic acid by free radicals. Its increased levels can lead to inflammation. It may contribute to cardiac diseases owing to their involvement in vasoconstriction and cardiomyocyte hypertrophy (thickening of heart muscles). 11-PGF2 α is also regarded as a marker of oxidative stress linked to inflammation.	Nitrative Stress Biomark	11-β-Prostaglandin F2α (ug/g)	0.14	(01-24-2024)	0.11	0.4	≤0.4
 Nitrodyrosine (ug/g) Nitrodyrosine (ug/g) Advanced Glycation Pro Protein Oxidation Product Nitrodyrosine (ug/g) Advanced Glycation Pro Protein Oxidation Product Nitrodyrosine (ug/g) Nitrodyrosine (ug/g) Advanced Glycation Pro Protein Oxidation Product Nitrodyrosine (ug/g) Nitrodyrosine (ug/g) Advanced Glycation Pro Protein Oxidation Product Nitrodyrosine (ug/g) Nitrodyrosine (ug/g) Protein Oxidation Product Nitrodyrosine (ug/g) Nitrodyrosine (ug/g) Nitrodyrosine (ug/g) Production of 11-β-prostaglandin F2α (11-PGF2α are indicative of the increased oxidation of arachidonic acid by free radicals. Its increased levels can lead to inflammation. It may contribute to cardiac diseases owing to their involvement in vasoconstriction and cardiomyocyte hypertrophy (thickening of heart muscles). 11-PGF2α is also regarded as a marker of oxidative stress linked to inflammation. 	Nitrative Stress Biomark Protein Oxidation Product 8-Nitroguanine (ug/g)	11-β-Prostaglandin F2α (ug/g) Lipid peroxidation is a degenerative	U.14	(01-24-2024)	0.11 break down lipids under o	0.4 xidative stress. The p	≤0.4
Advanced Glycation Pro Advanced Glycation Pro Protein Oxidation Product Net carbiovyethylysine (CEL) Net carbiovyethylysi	Nitrative Stress Biomark Protein Oxidation Product 8-Nitroguanine (ug/g) 8-Nitroguanceine (ug/g)	11-β-Prostaglandin F2α (ug/g) Lipid peroxidation is a degenerative affects cell membranes, lipoproteins	U. I 4 process wherein and other lipid-	(01-24-2024) free radicals attack and containing structures. Th	0.11 break down lipids under o ne non-enzymatic oxidatio	0.4 xidative stress. The p n of arachidonic acid	≤0.4 rocess leads to the
Protein Oxidation Product Net-caraboxynthyllysine (CEL) Net-caraboxynthyllysine (CEL)	Nitrative Stress Biomark Protein Oxidation Product 8-Nitroguanine (ug/g) 8-Nitroguanosine (ug/g) Nitrotrogiae (ug/g)	11-β-Prostaglandin F2α (ug/g) Lipid peroxidation is a degenerative affects cell membranes, lipoproteins production of 11-β-prostaglandin F2	U. I 4 process wherein s, and other lipid- α (11-PGF2α). It	(01-24-2024) free radicals attack and containing structures. Th is irreversibly produced f	0.11 break down lipids under o ne non-enzymatic oxidatio from prostaglandin D2 via	0.4 xidative stress. The p n of arachidonic acid the enzyme prostadla	≤0.4 rocess leads to the ndin-F
hypertrophy (thickening of heart muscles). 11-PGF2α is also regarded as a marker of oxidative stress linked to inflammation.	Nitrative Stress Biomark Protein Oxidation Product 8-Nitroguanine (ug/g) 8-Nitroguanosine (ug/g) Nitrotyrosine (ug/g) Advanced Glycatian Pro-	11-β-Prostaglandin F2α (ug/g) Lipid peroxidation is a degenerative affects cell membranes, lipoproteins production of 11-β-prostaglandin F2 synthase. Thus, elevated levels of 11	U. I 4 process wherein s, and other lipid- α (11-PGF2α). It -PGF2α are indic	(01-24-2024) free radicals attack and containing structures. Th is irreversibly produced f cative of the increased op	0.11 break down lipids under o ne non-enzymatic oxidatio rom prostaglandin D2 via xidation of arachidonic aci	0.4 xidative stress. The p n of arachidonic acid the enzyme prostagla id by free radicals. Its	≤0.4 rocess leads to the ndin-F increased
Ne-(caroboxymethyl)lysine (CM	Nitrative Stress Biomark Protein Oxidation Product 8-Nitroguanine (ug/g) 8-Nitroguanosine (ug/g) Nitrotyrosine (ug/g) Advanced Glycation Pro	11-β-Prostaglandin F2α (ug/g) Lipid peroxidation is a degenerative affects cell membranes, lipoproteins production of 11-β-prostaglandin F2 synthase. Thus, elevated levels of 11 levels can lead to inflammation. It m	U. I 4 process wherein s, and other lipid- α (11-PGF2α). It -PGF2α are indic ay contribute to	(01-24-2024) free radicals attack and containing structures. Th is irreversibly produced f cative of the increased op cardiac diseases owing t	0.11 break down lipids under o ne non-enzymatic oxidatio irom prostaglandin D2 via xidation of arachidonic aci to their involvement in vas	0.4 xidative stress. The p n of arachidonic acid the enzyme prostagla id by free radicals. Its oconstriction and car	≤0.4 rocess leads to the ndin-F increased diomyocyte
	Nitrative Stress Biomark Protein Oxidation Product 8-Nitroguanosine (ug/g) 8-Nitroguanosine (ug/g) Nitrotyrosine (ug/g) Advanced Glycation Pro Protein Oxidation Product Ne. carboxyethyllysine (CEL) fug/gi	11-β-Prostaglandin F2α (ug/g) Lipid peroxidation is a degenerative affects cell membranes, lipoproteins production of 11-β-prostaglandin F2 synthase. Thus, elevated levels of 11 levels can lead to inflammation. It m hypertrophy (thickening of heart must	U. I 4 process wherein a, and other lipid- α (11-PGF2α). It -PGF2α are indic ay contribute to scles). 11-PGF2α	(01-24-2024) free radicals attack and containing structures. Th is irreversibly produced f cative of the increased or cardiac diseases owing t a is also regarded as a m	0.11 break down lipids under o ne non-enzymatic oxidatio from prostaglandin D2 via xidation of arachidonic aci to their involvement in vas arker of oxidative stress li	0.4 xidative stress. The p n of arachidonic acid the enzyme prostagla id by free radicals. Its oconstriction and car nked to inflammation	≤0.4 rocess leads to the ndin-F increased diomyocyte

Oxidative Damage Score

Supplement Recommendations

	ation					
Nutrients	Dosage	Purpose				
Vitamin E	22 IU/day	Vitamin E supplements reduce 8-iso-prostagiandin F20 (8-io-0F220) levels by acting as an antioxidant, neutralizing reactive oxygen species that would otherwise promote the forwarism of 8-iso-0F25a. Vitamin E supplements enhance cellular antioxidant defenses by reducing lipid peroxidation, indirectly lexified to increase classias enzyma activity, which being be instalistica harming in species that the supplement of the supplement of the supplement of the supplement of the supplement species of the supplement of the supplement of the supplement of the supplement species of the supplement of the supplement of the supplement of the supplement reducing lipid peroxidation and protecting cellular membranes, which indirectly increases SOD antioxidist markers, helping to neutralize harmful supervolde radicals.				
		Vitamin C supplementation decreases 8-iso-prostaglandin F2α (8-iso-PGF2α) levels by acting as a powerful antioxidant, scavenging free radicals and inhibiting lipid peroxidation, thereby reducing oxidative states. Vitamic Cenhances GDP4				
Vitamin C	90 mg/day	which is then used by GPX1 to neutralize cells from coldary damage. Vitamin C is phosphorjation of AMPK through activat energy sensing and metabolic regulation, electrons to the enzyme's active site, inco- destrons to the enzyme's active site, inco- destrons to the enzyme's active site, inco- electrons to the enzyme's active site, inco- sent a				
Selenium	55 mcg/day	Selenium reduces 81-so-prostaglandin F2, glutathione percuisas, which helps neutral 81-so-DF22a, Selenium supplements incre GPX1 enzyme's active site, enhancing its species. Selenium, when incorporated into as a confact, facilitating the breakdown of catalase's antioxidant function. Selenium including aetimum dependent supported Bitmutase (SUU), which, in turn, increases SUU activity and levels, boosting cellular antioxidant defenses against supercode rediculas. Selenium supplements in ability to catalave the prediction of barroli reactive workers excess. Selenium its ability to catalave the prediction of barroli reactive workers excess.				
Vitamin D3	4000 IU/day	Vitamin 03 supplementation upergulates catalase expression by activiting the vitamin D exceptor (VDR) in cells, taking to increase at transcription of catalase perse, thus exhancing antioxidant defences against coldative stress. Vitamin 02 supplementation enhances the expression of supercoide dismutase (SOO) genes by hinding to vitamin D receptors (VDR) in cells, which leads to increased transcription of SOD genes and subsequently elevates SOD antioxidant markers to counteract oxidative stress.				
Coenzyme Q10	100-200 mg/day	Contryme Q10 (CoQ10) supplements enhance mitochondrial function, increasing cellular energy production and aiding catalase enzyme activity, which in turn boosts the breakdown of hydrogen peroxide, reducing oxidative stress and elevating catalase antioxidant markers. Coerzyme Q10 (CoQ10) supplementation enhances mitochondrial function, promoting efficient electron transport in the respiratory chan, which, in turn reduces oxidative stress, nereases cellular APP production, and stimulates the expression and activity of superoxide dismutase (SOD) enzymes, leading to higher SOD antioxidant marker levels.				

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Vitamin E supplements reduce 8-iso-prostaglandin F2a (8-iso-PGF2a) levels by acting as an antioxidant, neutralizing reactive oxygen species that would otherwise promote the formation of 8-iso-PGF2a. Vitamin E supplements enhance cellular antioxidant defenses by reducing lipid peroxidation, indirectly leading to increased catalase enzyme activity, which helps neutralize harmful reactive oxygen species (ROS). Vitamin E supplements enhance the activity of superoxide dismutase (SOD) enzymes by reducing lipid peroxidation and protecting cellular membranes, which indirectly increases SOD antioxidant markers, helping to neutralize harmful superoxide radicals.

Learn More - NEW Research

Oxidative Stress Mechanisms, Quantifications and its Role in Human Aging

Oxidative Stress: Mechanisms, Quantification and its role in human aging

Hari Krishnan Krishnamurthy¹*, Michelle Pereira,² Imbaasree R,² Vasanth Jayaraman,¹ Karthik Krishna,¹ Tianhao Wang,¹ Kang Bei,¹ John J. Rajasekaran¹.

> 1 Vibrant Sciences LLC., San Carlos, CA, United States of America 2 Vibrant America LLC., San Carlos, CA, United States of America

7 Acknowledgement: We acknowledge Vibrant America LLC for supporting this research.

1

2

3

4

5

6

Article title: Oxidative Stress: Mechanisms, Quantifica Authors: Hari Krishnamurthy[1], Michelle Pereira[2], Tianhao Wang[1], Kang Bei[1], John J. Rajasekaran[1] Affiliations: vibrant sciences [1], vibrant america [2] Orcid ids: 0000-0002-7832-8423[1], 0000-0001-6549-334 Contact e-mail: michelle.p@vitasoft-tech.com License information: This work has been published of http://creativecommons.org/licenses/by/4.0/, which medium, provided the original work is properly cited. https://www.scienceopen.com/. Preprint statement: This article is a preprint and has ScienceOpen Preprints for open peer review. Funder(s): Vibrant America LLC DOI: 10.14293/PR2199.000699.v1 Preprint first posted online: 08 February 2024 Keywords: oxidative stress, reactive oxygen species, peroxidation

ABSTRACT

Oxidative stress refers to the imbalance between the production of oxidant species and the body's ability to quench them using antioxidants, favoring the rise in oxidant levels. This leads to the damage of cellular macromolecules such as lipids, DNA, RNA, and proteins. The body's ability to manage oxidative stress and maintain it at an optimum level is crucial for overall health. Oxidative damage, if left unmitigated, contributes to the aging process characterized by the progressive deterioration of physiological functions and cellular structures. Understanding the mechanisms of oxidative stress along with its reliable quantification can enable consistency and comparability in clinical practice across diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible owing to their high reactivity, short half-life, and quantification challenges using conventional techniques. Quantifying oxidative damage products and antioxidants pose as appropriate markers, indicating the degree of oxidative stress in the body. This review comprehensively discusses the mechanism of generation of key oxidant species, their sources, the beneficial roles played by them at low levels and the detrimental effects exerted by their elevated levels. The review also provides insights into the effective quantification techniques for damage products of lipids nucleic acids, and proteins along with the endogenous and exogenous antioxidant markers. Effective quantification of oxidative stress may improve our understanding on the phenomenon which may aid in maintaining cellular integrity, preventing age-associated diseases, and thereby promoting optimal well-being and longevity.

Keywords: oxidative stress, reactive oxygen species, reactive nitrogen species, free radicals, antioxidants, lipid peroxidation

https://www.scienceopen.com/document_file/0440cca8-e66d-4d53-9605-4db471c9e647/ScienceOpenPreprint/Manuscript%20%28Full%20draft%29%20-%20OS%20Mechanisms,%20Quantification%20and%20its%20role%20in%20human%20aging.pdf

Thank you!

Dr. Kim Bruno, DC, CCN Visit me for questions at the Vibrant Booth!

Let's Connect! IG - @DrKimBruno @VibrantLabs

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Information Classification: General

APPENDIX: Clinical Considerations

Approaches for Management

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Information Classification: General

Which Patients Benefit Most?

- Toxins
 - Heavy Metals
 - Environmental Toxins
 - Ionizing Radiation
- Too Many Calories
- Hyperglycemia
- Chronic Infections
 - Tickborne, mycotoxins etc.

- Rapid Aging
- Cigarette Smoke
- Alcohol
- UV Radiation
- Lack of Improvement
 - Despite inflammation-focused treatment

Patients With Worsening Health

From 0 to 10, how is your level of wellness?

- 0 being "cannot function"
- 10 being "perfect vibrant effortless health"

Approaches To Managing Oxidative Stress Identify And Treat the Cause!

Possible causes:

- Toxin exposure: pesticides, PFAS, heavy metals, mycotoxins, etc.
- Metabolic conditions: Hyperglycemia, NAFLD (lipotoxicity)
- Lifestyle: Diet, smoking, alcohol, excessive exercise, inadequate sleep
- Stress
- UV and ionizing radiation
- Inflammation: chronic infections, gut health, dietary/food sensitivity
- Genetic predisposition

Supplement Considerations for Oxidative Stress

- Vitamins A, C, E, and carotenoids
- Minerals selenium and zinc
- Omega-3 fatty acids
 - Reduce sat. fat balance (long-chain SFA are pro-oxidant)
 - Reduce omega-6:omega 3 ratio
- Alpha-lipoic acid
- Olive oil (due phenols, likely not the MUFAs)
- Endogenous antioxidants glutathione, melatonin, CoQ10
Targeting Upregulation of Endogenous Antioxidant Response Element

- Phytonutrients: green tea catechins, coffee polyphenols, curcumin, resveratrol, quercetin, sulforophane, anthocyanins, berberine, cocoa polyphenols
- Medicinal plants: ashwagandha, astragalus, bacopa, saffron, rhodiola, eleutherococcus, ginseng, ginkgo
- Herbs and Spices: clove, cinnamon, cumin, rosemary, oregano, parsley, basil, turmeric, mints, sage, ginger, garlic

Modifiable Personal Lifestyle Factors

- Diet
- Exercise
- Sleep
- Stress
- Psychosocial Support & Relationships

Dietary Risk Factors for Oxidative Stress

- **Detrimental chemicals** in diet pesticides, heavy metals, xenobiotics
- Alcohol
- Lack of phytonutrients
- Processed meat
- High saturated fat and cholesterol
- High fructose, and high sugar in general
- Gluten, possibly even in non-celiac
- Excess calories

Dietary Patterns And Oxidative Stress

- Plant-based diet was associated with lower levels of oxidative stress and inflammation
- Mediterranean diet reduced levels of lipid peroxidation and oxidative DNA damage
- DASH diet lowered levels of lipid peroxidation and increased nitric oxide levels.
- Western diets were associated with higher oxidative stress and inflammation levels

Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol. 2021;42:101869. doi: 10.1016/j.redox.2021.101869.

Copyright © 2024 Dr Kim Bruno. All rights reserved.

Information Classification: General

Movement & Exercise

- Exercise-induced oxidative stress varies depending on the intensity and duration of the exercise, the patient's fitness level, age, and overall health.
- Vigorous intensity exercise generates oxidative stress.
- Generally, oxidative stress markers increase following exercise but are often restored to baseline levels within a short period, typically within hours to a day after exercise.
- Of note, creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise.

Sleep Support

The relationship between oxidative stress and impaired sleep quality is a complex interplay of various physiological mechanisms involving:

- Circadian rhythm disruption
- Inflammatory pathways
- Endocrine changes
- Mitochondrial dysfunction

Leading to increased oxidative damage and reduced antioxidant defense capabilities.

Sleep duration is inversely correlated with oxidative stress.

Evidence suggests that individuals with <6 hours of sleep/night exhibit significantly higher levels of oxidative stress biomarkers compared to those with adequate sleep (7-8 hours).

Stress Management

- Cognitive Behavioral Therapy (CBT)
- Mindfulness-Based Stress Reduction (MBSR)
- Meditation
- Yoga
- Tai Chi
- Breathing exercises
- Biofeedback

Psychosocial Support & Relationships

- Social isolation, loneliness, lack of social support, and adverse social determinants of health can all contribute to an increased physiological stress response, which, in turn, can elevate oxidative stress biomarkers.
- The physiological link between these social factors and oxidative stress is rooted in the body's stress response.
- Chronic psychological stress can lead to an overproduction of stress hormones and free radicals and a decrease in antioxidant defenses.
- Healthcare providers and patients may wish to target psychosocial and relationship support in their oxidative stress reduction care plans.