

Learn how to interpret CardiaX Panel markers to **detect heart disease and related conditions early and accurately,** so you can implement clinical strategies based on your patient's unique genetics.

|              | Gene  | Metabolic Consequence—What is it?                                                                                                                                                                                                 | Risk Associations with Polymorphisms/Variations                                                                                                                                   | Clinical Implications/<br>Recommendations                                                                                                                                                                                                                 |
|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hypertension | ADRB2 | <b>B2 Adrenergic Receptor</b><br>A receptor protein that binds with epinephrine to<br>control smooth muscle relaxation.                                                                                                           | Associated with:<br>• Obesity and type 2 diabetes<br>• High blood pressure<br>• Ischemic stroke<br>• Idiopathic thromboembolism<br>• Asthma                                       | *Therapeutic Lifestyle Changes<br>(TLC) for cardio-metabolic<br>disease risk reduction, including:<br>• Reduced sodium/ <u>DASH diet</u><br>• Weight loss<br>• High-fiber diet<br>• Avoiding unhealthy fats<br>• Alcohol moderation<br>• Aerobic exercise |
|              | Corin | A key enzyme in the biosynthesis of <b>atrial</b><br><b>natriuretic peptide (ANP)</b> and <b>brain natriuretic</b><br><b>peptide (BNP)</b> , which regulates salt and water<br>balance, intravascular volume, and blood pressure. | <ul> <li>Increased risk of hypertension and preeclampsia in pregnant women</li> <li>Increased risk for cardiovascular disease (CVD) and congestive heart failure (CHF)</li> </ul> | <ul> <li>*TLC</li> <li>Optimize dietary<br/>sodium/potassium ratio</li> <li>Pregnant women: consult<br/>with a medical professional<br/>before making changes</li> <li>ACE inhibitors or Angiotensin<br/>blockers</li> </ul>                              |

(continued on next page)



Phone: 1 (866) 364-0963 Email: support@vibrant-wellness.com



|                            | Gene    | Metabolic Consequence—What is it?                                                                                                                                           | Risk Associations with Polymorphisms/Variations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clinical Implications/<br>Recommendations                                                                                                                                                                                |
|----------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Hypertension</b> (cont) | CYP1A2  | Gene responsible for 95% of <b>caffeine</b><br><b>metabolism</b> in the liver.                                                                                              | <ul> <li>Genetic polymorphisms can result in increased or decreased caffeine metabolism.</li> <li>Dose and age-related response: <ul> <li>Homozygotes are slower metabolizers than heterozygotes</li> </ul> </li> <li>Fast metabolizers <ul> <li>Decreased risk for hypertension (HTN) and myocardial infarction (MI)</li> </ul> </li> <li>Slow metabolizers <ul> <li>Represents 50% of the population</li> <li>Risk of hypertension and heart attack is directly based on amount of caffeine consumption and age</li> <li>Moderate increased risk for: <ul> <li>HTN</li> <li>MI</li> <li>Congenital heart defects (CHD)</li> <li>Tachycardia</li> <li>Stiff aorta</li> <li>Pulse wave velocity</li> <li>Aortic insufficiency</li> <li>Vascular inflammation</li> <li>Increased catecholamines</li> </ul> </li> </ul></li></ul> | Slow metabolizers should<br>consume no more than 200 mg of<br>caffeine per day, if any.<br>Possible caffeine sources include:<br>• Coffee, tea, soda, and other<br>caffeinated beverages<br>• Chocolate<br>• Medications |
| H                          | CYP11B2 | Aldosterone Synthase<br>The gene responsible for aldosterone<br>synthesis in the adrenal glands.                                                                            | <ul> <li>Polymorphisms associated with increased aldosterone.</li> <li>Higher aldosterone levels increase blood pressure (BP)</li> <li>Increased risk for HTN and aldosterone enzyme disorder</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Spironolactone treatment for resistant hypertension.</li> <li>*TLC to reduce HTN</li> </ul>                                                                                                                     |
|                            | ACE I/D | <b>Angiotensin Converting Enzyme</b><br>Enzyme found in the lungs that is a major<br>player in the speed and regulation of renin-<br>angiotensin-aldosterone system (RAAS). | <ul> <li>Insertion/deletion genomics</li> <li>Mutation stimulates the RAAS</li> <li>Higher risk for CVD and MI</li> <li>Higher salt sensitivity</li> <li>Higher risk of HTN with sodium intake</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>*TLC to reduce HTN and cardiometabolic disease risk</li> <li>Low sodium/DASH diet</li> </ul>                                                                                                                    |

#### (continued on next page)



|                            | Gene    | Metabolic Consequence—What is it?                                                                                                    | Risk Associations with Polymorphisms/Variations                                                                                                                                                                                                                                                                     | Clinical Implications/<br>Recommendations                                                                                                                                 |
|----------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Hypertension</b> (cont) | CYP4A11 | Gene that codes for an enzyme that produces a <b>metabolite 20-HETE</b> , an eicosanoid metabolite of arachidonic acid               | <ul> <li>20-HETE is a potent vasoconstrictor and contributes to elevations in: <ul> <li>Oxidative stress</li> <li>Endothelial dysfunction</li> </ul> </li> <li>20-HETE also increases peripheral vascular resistance associated with some forms of hypertension—particularly salt-sensitive hypertension</li> </ul> | <ul> <li>Amiloride use in conjunction<br/>with other diuretics to control<br/>HTN</li> <li>*TLC to reduce HTN</li> </ul>                                                  |
|                            | CYP4F2  | Codes for an enzyme that starts the process of inactivating and degrading <b>Leukotriene B4</b> , a potent mediator of inflammation. | <ul> <li>Polymorphisms associated with:</li> <li>Decreased degradation of Leukotriene B4</li> <li>Higher levels of Leukotriene B4</li> <li>ncreased inflammation</li> <li>Increased risk of HTN and MI</li> </ul>                                                                                                   | <ul><li>*TLC</li><li>DASH diet</li></ul>                                                                                                                                  |
|                            | AGTR1   | <b>Angiotensin II Receptor Type 1</b><br>Involved in the regulation of blood pressure and<br>renal function.                         | Variations directly affect the RAAS system, which controls blood pressure, depending on potassium intake.                                                                                                                                                                                                           | <ul> <li>Use ACE inhibitors and<br/>angiotensin blockers to<br/>control HTN</li> <li>*TLC to control HTN</li> <li>Optimize sodium: potassium<br/>ratio in diet</li> </ul> |



Phone: 1 (866) 364-0963 Email: support@vibrant-wellness.com Visit us online: www.vibrant-wellness.com 1360 Bayport Ave. Ste. B San Carlos, CA 94070



|                                 | Gene  | Metabolic Consequence—What is it?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Risk Associations with Polymorphisms/Variations                                                                                                                                                                                                                                                                                                                                                                                                                       | Clinical Implications/<br>Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disease                         | ADRB2 | <b>Beta-2 Adrenergic Receptor</b><br>Interacts with epinephrine and adrenaline to<br>indirectly control smooth muscle relaxation and<br>bronchodilation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Associated with:<br>• Obesity and type 2 diabetes<br>• High blood pressure<br>• Ischemic stroke<br>• Idiopathic thromboembolism<br>• Asthma                                                                                                                                                                                                                                                                                                                           | <ul> <li>*TLC</li> <li>Lots of plant-based foods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dyslipidemia and Metabolic Dise | АроЕ  | <ul> <li>ApoE is a gene that codes for Apolipoprotein E, produced primarily by the liver and brain.</li> <li>ApoE-containing lipoproteins transport lipids (fats) from the diet to other tissues for storage and transport cholesterol from those tissues to the liver for excretion.</li> <li>The genetic variation influences susceptibility to dietary fat and other lifestyle factors.</li> <li>There are three variations (alleles) of Apo E2, E3, and E4, and individuals carry two alleles for a variety of genetic combinations: <ul> <li>E2/2</li> <li>E2/3</li> <li>E2/4</li> <li>E3/3</li> <li>E3/4</li> <li>E4/4</li> </ul> </li> <li>E4 allele is found in 25% of the population and predisposes an individual to: <ul> <li>Elevated levels of LDL cholesterol and triglycerides</li> <li>Increased risk of atherosclerosis</li> </ul> </li> </ul> | <ul> <li>ApoE e4 genotype (E3/4, E 4/4, or E3/e4) is associated with increased cholesterol, absorption rates, higher serum LDL, and delayed clearance</li> <li>Increased CVD risk with smoking and alcohol intake</li> <li>Reduced ability to repair vascular endothelium due to inability to activate Apo E2 receptor to produce nitric oxide (NO)</li> <li>Lowered response to statin</li> <li>Increased risk of CHD, CVD, MI, Alzheimer's, and dementia</li> </ul> | <ul> <li>Individualized omega-3<br/>treatment/supplementation</li> <li>Diet low in trans fats, refined<br/>oils, and conventional<br/>saturated fats</li> <li>Avoid refined, high glycemic<br/>foods</li> <li>Diet high in plant-based foods<br/>and fiber</li> <li>Apo E4's: Avoid smoking and<br/>alcohol intake</li> <li>Daily physical activity is<br/>particularly important for Apo<br/>E4's</li> <li>Simvastatin may be a better<br/>choice than statin therapy, as<br/>Apo E4's are less responsive<br/>to statin therapy</li> <li>May need to combine statins<br/>with other lipid-lowering<br/>agents</li> </ul> |

#### (continued on next page)

Phone: 1 (866) 364-0963 Email: support@vibrant-wellness.com



|                                           | Gene   | Metabolic Consequence—What is it?                                                                                                                                                                                                                                                                  | Risk Associations with Polymorphisms/Variations                                                                                                                      | Clinical Implications/<br>Recommendations                                                                                                         |
|-------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Dyslipidemia and Metabolic Disease (cont) | SCARB1 | A liver protein receptor involved in <b>HDL</b> clearance.                                                                                                                                                                                                                                         | <ul> <li>HDL cannot attach to receptor for breakdown,<br/>leading to decreased HDL clearance and elevated<br/>levels of dysfunctional (nonprotective) HDL</li> </ul> | <ul> <li>*TLC</li> <li>Exercise</li> <li>Moderate alcohol</li> <li>Healthy fats and oils</li> </ul>                                               |
|                                           | 1q25   | <ul> <li>Variation on chromosome position 1q25.</li> <li>Important in: <ul> <li>Cell proliferation and signaling</li> <li>Inhibition of apoptosis</li> <li>Insulin and glucose metabolism</li> <li>Incretin</li> <li>Enterocyte health</li> <li>Endothelial cell metabolism</li> </ul> </li> </ul> | <ul> <li>Reduced expression of glutamine synthase, which converts glutamic acid to glutamine</li> <li>Higher risk for diabetes and insulin resistance</li> </ul>     | Optimize diet for glycemic<br>control with:<br>• Exercise<br>• Low sugar/high fiber<br>• Low glycemic index<br>Consider glutathione<br>supplement |
|                                           | АроА1  | Gene that provides instructions for making<br>Apo A1 Lipoprotein<br>Found on HDL lipoprotein and is involved with<br>a reaction called cholesterol esterification<br>that converts cholesterol to a form that can<br>be fully integrated into HDL and transported<br>through the bloodstream.      | <ul> <li>Results in impaired reverse cholesterol transport</li> <li>Dyslipidemia risk</li> </ul>                                                                     | <ul> <li>*TLC</li> <li>Increase in omega-3's</li> <li>Moderate alcohol consumption</li> </ul>                                                     |
|                                           | АроА2  | Gene that provides instructions for making <b>Apo A2 lipoprotein</b> , the second most abundant high-density lipoprotein particle.                                                                                                                                                                 | Increased risk for obesity, dyslipidemia, and diabetes                                                                                                               | *TLC                                                                                                                                              |
| Dyslip                                    | АроСЗ  | ApoC3 protein is a <b>component of VLDL</b> .<br>It inhibits lipoprotein lipase and hepatic lipase<br>and is thought to delay catabolism of<br>triglyceride-rich particles.                                                                                                                        | Results in increased levels of ApoC3, which can result<br>in:<br>• Hypertriglyceridemia<br>• Dyslipidemia<br>• CHD<br>• NAFLD                                        | Aggressive management and treatment of lipids                                                                                                     |



|                             | Gene   | Metabolic Consequence—What is it?                                                                                                                                                                                                                                                                                 | Risk Associations with Polymorphisms/Variations                                                                                                                                                                    | Clinical Implications/<br>Recommendations                                                                                                                                                                 |
|-----------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced Predictive Markers | 9p21   | A chromosomal region for which there are <b>4</b><br><b>SNPs.</b><br>Discovered in 2007 and said to be "a genetic<br>revolution for cardiovascular disease".<br>Involved in regulation of inflammatory<br>pathways and significantly correlated with<br>adverse events independent of other lifestyle<br>factors. | Associated with:<br>Increased risk for inflammation<br>Plaque rupture<br>Thrombosis<br>Abdominal aortic aneurysm<br>Atherosclerotic cardiovascular disease<br>CHD<br>MI<br>Diabetes mellitus<br>Insulin resistance | <ul> <li>Aggressive early<br/>detection, prevention, and<br/>risk factor control</li> <li>Aggressive dietary<br/>management (anti-<br/>inflammatory) and<br/>emphasis on plant-based<br/>foods</li> </ul> |
|                             | 4q25   | Chromosomal regions with <b>2 SNPs</b> .                                                                                                                                                                                                                                                                          | <ul> <li>Increased risk for atrial fibrillation and ischemic stroke</li> </ul>                                                                                                                                     | <ul> <li>*TLC</li> <li>Emphasis on sodium<br/>restriction (&lt;1500 mg per<br/>day)</li> </ul>                                                                                                            |
|                             | 6p24.1 | A gene that codes for a peptide that is a <b>potent vasoconstrictor.</b>                                                                                                                                                                                                                                          | Increased risk for venous thrombosis and CHD                                                                                                                                                                       | <ul> <li>Early detection and<br/>preventative treatment</li> <li>*TLC</li> <li>Emphasize lower fat and<br/>high plant-based<br/>foods/fiber</li> </ul>                                                    |



|                       | Gene  | Metabolic Consequence—What is it?                                                                                                                                                                                                                                                                                                                                                                        | Risk Associations with Polymorphisms/Variations                                                                                                                                                                                                                                                          | Clinical Implications/<br>Recommendations                                                                                                                                                                                                      |
|-----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ation and Methylation | MTHFR | <ul> <li>Methylene Tetrahydrofolate Reductase</li> <li>Enzyme that catalyzes the methylation (activation) of folic acid to L methyl folate, which is involved in: <ul> <li>Homocysteine clearance</li> <li>And the formation of tetrahydrobiopterin (BH4), an important cofactor in the production of neurotransmitters, synthesis of nitric oxide, and detoxification of ammonia</li> </ul> </li> </ul> | <ul> <li>2 SNPs possible: 677 and 1298</li> <li>Increased risk for: <ul> <li>Endothelial dysfunction</li> <li>Hypertension</li> <li>Thrombosis</li> <li>CVD</li> <li>CHD</li> <li>MI</li> <li>Hyper-homocysteinemia</li> <li>Neurological diseases such as depression and anxiety</li> </ul> </li> </ul> | <ul> <li>Methylation treatment as appropriate</li> <li>Emphasize foods high in dietary folate, vitamins B12, B6 and B2, zinc</li> <li>TMG (trimethylglycine) or betaine supplement can be considered</li> </ul>                                |
|                       | GSHPx | <b>Glutathione Peroxidase enzyme</b><br>"Master detoxifier"<br>Increased levels help lower BP and decrease risk<br>for MI, LVH, and CHF                                                                                                                                                                                                                                                                  | Low levels associated with:<br>• Decreased enzyme activity<br>• Less detoxification<br>• Increased risk for CVD                                                                                                                                                                                          | <ul> <li>Supplementation with selenium and glutathione</li> <li>*TLC</li> <li>High antioxidant diet</li> </ul>                                                                                                                                 |
| Detoxification        | NOS3  | <b>Nitric Oxide Synthase 3</b><br>Nitric oxide, an important molecule to quench free<br>radicals, is synthesized by NOS from L-arginine                                                                                                                                                                                                                                                                  | 3 polymorphisms possible<br>Leads to a decreased production of NOS and less nitric<br>oxide availability, resulting in higher free radical<br>accumulation                                                                                                                                               | <ul> <li>Nitric oxide precursor<br/>supplements</li> <li>Upregulate nitric oxide with<br/>exercise (very important)</li> <li>Diet high in dietary nitrates<br/>that act as precursors to<br/>nitric oxide (leafy greens,<br/>beets)</li> </ul> |

#### (continued on next page)



Phone: 1 (866) 364-0963 Email: support@vibrant-wellness.com



|                                          | Gene | Metabolic Consequence—What is it?                                                                                                                                                                                                                         | Risk Associations with Polymorphisms/Variations                                                                                                                                                                                                | Clinical Implications/<br>Recommendations                                                                                                                                                                             |
|------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detoxification and<br>Methylation (cont) | СОМТ | Catechol-o-Methyltransferase<br>An enzyme that breaks down neurotransmitters<br>Particularly prominent in the region of the brain<br>that processes:<br>• Personality<br>• Abstract thinking<br>• Emotion<br>• Aggressive behavior<br>• Short-term memory | Variations result in reduced enzyme activity, leading to<br>elevated norepinephrine and prolonged stimulation of<br>sympathetic nervous system.<br>May be at the root cause of aggression, anger, and hostility,<br>and increased risk for HTN | <ul> <li>Evaluate use of Vitamin E and aspirin based on COMT mutation.</li> <li>Give aspirin or Vitamin E to met/met (A/A-homozygous mutant) but neither to val/met(G/A) nor val/val (G/G-homozygous wild)</li> </ul> |

#### **\*TLC: Therapeutic Lifestyle Changes**

#### **Diet Recommendations**

- · Limit refined carbohydrates from dietary sugar and processed grains
- Maximize plant-based fiber with a wide range of vegetables and fruits in a range of colors
- Optimize dietary sodium and potassium ratio
- Incorporate healthy dietary oils and fats as appropriate for energy requirements
  - Non-refined/expeller pressed oils such as olive and avocado oil
  - Foods that supply unsaturated fats, including olives, avocado, raw nuts and seeds, natural nut butters, and nut milks
  - Omega-3 fats from oily fish and plant-based sources
  - Saturated fats in moderation from high-quality sources such as grass-fed butter, game meats, eggs, grass-fed beef, organic dark meat chicken, cheese, coconut oil, and coconut milk
- NO hydrogenated or partially hydrogenated oils (trans fats)
- · Consume high-quality protein as appropriate for energy requirements
- Consider prebiotic and probiotic food sources
- Choose organic foods recommended by the Environmental Working Group

#### **Lifestyle Modifiers**

- Tobacco cessation
- Exercise according to <u>ACSM (American College</u> of Sports Medicine) guidelines
- Adequate hydration with clean water
- Stress management
- Sleep hygiene

#### **Abbreviations:**

HTN = Hypertension CVD = Cardiovascular Disease RAAS = Renin Angiotensin-Aldosterone System SNS = Sympathetic Nervous System

Published 2/22/2023



Phone: 1 (866) 364-0963 Email: support@vibrant-wellness.com